[1] |
White JP, Cibelli M, Urban L, et al. TRPV4: molecular conductor of a diverse orchestra[J]. Physiol Rev, 2016, 96(3): 911-973.
doi: 10.1152/physrev.00016.2015
pmid: 27252279
|
[2] |
Alessandri-Haber N, Yeh JJ, Boyd AE, et al. Hypotonicity induces TRPV4-mediated nociception in rat[J]. Neuron, 2003, 39(3): 497-511.
doi: 10.1016/s0896-6273(03)00462-8
pmid: 12895423
|
[3] |
Benfenati V, Amiry-Moghaddam M, Caprini M, et al. Expression and functional characterization of transient receptor potential vanilloid-related channel 4 (TRPV4) in rat cortical astrocytes[J]. Neuroscience, 2007, 148(4):876-892.
pmid: 17719182
|
[4] |
Konno M, Shirakawa H, Iida S, et al. Stimulation of transient receptor potential vanilloid 4 channel suppresses abnormal activation of microglia induced by lipopolysaccharide[J]. Glia, 2012, 60(5): 761-770.
doi: 10.1002/glia.22306
pmid: 22331560
|
[5] |
Willard VP, Leddy HA, Palmer D, et al. Transient receptor potential vanilloid 4 as a regulator of induced pluripotent stem cell chondrogenesis[J]. Stem Cells, 2021, 39(11): 1447-1456.
doi: 10.1002/stem.3440
pmid: 34427363
|
[6] |
Mizoguchi F, Mizuno A, Hayata T, et al. Transient receptor potential vanilloid 4 deficiency suppresses unloading-induced bone loss[J]. J Cell Physiol, 2008, 216(1): 47-53.
doi: 10.1002/jcp.21374
pmid: 18264976
|
[7] |
McNulty AL, Leddy HA, Liedtke W, et al. TRPV4 as a therapeutic target for joint diseases[J]. Naunyn Schmiedebergs Arch Pharmacol, 2015, 388(4): 437-450.
doi: 10.1007/s00210-014-1078-x
|
[8] |
Klein CJ, Cunningham JM, Atkinson EJ, et al. The gene for HMSN2C maps to 12q23-24: a region of neuromuscular disorders[J]. Neurology, 2003, 60(7): 1151-1156.
pmid: 12682323
|
[9] |
Deng HX, Klein CJ, Yan J, et al. Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4[J]. Nat Genet, 2010, 42(2): 165-169.
doi: 10.1038/ng.509
|
[10] |
Echaniz-Laguna A, Dubourg O, Carlier P, et al. Phenotypic spectrum and incidence of TRPV4 mutations in patients with inherited axonal neuropathy[J]. Neurology, 2014, 82(21): 1919-1926.
doi: 10.1212/WNL.0000000000000450
pmid: 24789864
|
[11] |
Mortier GR, Cohn DH, Cormier-Daire V, et al. Nosology and classification of genetic skeletal disorders: 2019 revision[J]. Am J Med Genet A, 2019, 179(12): 2393-2419.
doi: 10.1002/ajmg.a.61366
pmid: 31633310
|
[12] |
Nishimura G, Lausch E, Savarirayan R, et al. TRPV4-associated skeletal dysplasias[J]. Am J Med Genet C Semin Med Genet, 2012, 160C(3): 190-204.
doi: 10.1002/ajmg.c.31335
|
[13] |
Inada H, Procko E, Sotomayor M, et al. Structural and biochemical consequences of disease-causing mutations in the ankyrin repeat domain of the human TRPV4 channel[J]. Biochemistry, 2012, 51(31): 6195-6206.
doi: 10.1021/bi300279b
pmid: 22702953
|
[14] |
D'Hoedt D, Owsianik G, Prenen J, et al. Stimulus-specific modulation of the cation channel TRPV4 by PACSIN 3[J]. J Biol Chem, 2008, 283(10): 6272-6280.
doi: 10.1074/jbc.M706386200
pmid: 18174177
|
[15] |
Garcia-Elias A, Mrkonjic S, Pardo-Pastor C, et al. Phosphatidylinositol-4,5-biphosphate-dependent rearrangement of TRPV4 cytosolic tails enables channel activation by physiological stimuli[J]. Proc Natl Acad Sci U S A, 2013, 110(23): 9553-9558.
doi: 10.1073/pnas.1220231110
|
[16] |
Hu X, Li N, Xu Y, et al. Proband-only medical exome sequencing as a cost-effective first-tier genetic diagnostic test for patients without prior molecular tests and clinical diagnosis in a developing country: the China experience[J]. Genet Med, 2018, 20(9): 1045-1053.
doi: 10.1038/gim.2017.195
pmid: 29095814
|
[17] |
Hu X, Guo R, Guo J, et al. Parallel tests of whole exome sequencing and copy number variant sequencing increase the diagnosis yields of rare pediatric disorders[J]. Front Genet, 2020, 11: 473.
doi: 10.3389/fgene.2020.00473
pmid: 32595695
|
[18] |
Yao R, Zhang C, Yu T, et al. Evaluation of three read-depth based CNV detection tools using whole-exome sequencing data[J]. Mol Cytogenet, 2017, 10: 30.
doi: 10.1186/s13039-017-0333-5
pmid: 28852425
|
[19] |
Velilla J, Marchetti MM, Toth-Petroczy A, et al. Homozygous TRPV4 mutation causes congenital distal spinal muscular atrophy and arthrogryposis[J]. Neurol Genet, 2019, 5(2): e312.
doi: 10.1212/NXG.0000000000000312
|
[20] |
Thibodeau ML, Peters CH, Townsend KN, et al. Compound heterozygous TRPV4 mutations in two siblings with a complex phenotype including severe intellectual disability and neuropathy[J]. Am J Med Genet A, 2017, 173(11): 3087-3092.
doi: 10.1002/ajmg.a.38400
pmid: 28898540
|
[21] |
Unger S, Lausch E, Stanzial F, et al. Fetal akinesia in metatropic dysplasia: The combined phenotype of chondrodysplasia and neuropathy?[J]. Am J Med Genet A, 2011, 155A(11): 2860-2864.
doi: 10.1002/ajmg.a.34268
pmid: 21964829
|
[22] |
Nilius B, Voets T. The puzzle of TRPV4 channelopathies[J]. EMBO Rep, 2013, 14(2): 152-163.
doi: 10.1038/embor.2012.219
pmid: 23306656
|
[23] |
Sullivan JM, Zimanyi CM, Aisenberg W, et al. Novel mutations highlight the key role of the ankyrin repeat domain in TRPV4-mediated neuropathy[J]. Neurol Genet, 2015, 1(4): e29.
doi: 10.1212/NXG.0000000000000029
|
[24] |
Auer-Grumbach M, Olschewski A, Papic L, et al. Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C[J]. Nat Genet, 2010, 42(2): 160-164.
doi: 10.1038/ng.508
pmid: 20037588
|
[25] |
Landoure G, Zdebik AA, Martinez TL, et al. Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C[J]. Nat Genet, 2010, 42(2): 170-174.
doi: 10.1038/ng.512
|
[26] |
Dai J, Kim O H, Cho T J, et al. Novel and recurrent TRPV4 mutations and their association with distinct phenotypes within the TRPV4 dysplasia family[J]. J Med Genet, 2010, 47(10): 704-709.
doi: 10.1136/jmg.2009.075358
pmid: 20577006
|
[27] |
Krakow D, Vriens J, Camacho N, et al. Mutations in the gene encoding the calcium-permeable ion channel TRPV4 produce spondylometaphyseal dysplasia, Kozlowski type and metatropic dysplasia[J]. Am J Hum Genet, 2009, 84(3): 307-315.
doi: 10.1016/j.ajhg.2009.01.021
pmid: 19232556
|
[28] |
Loukin SH, Teng J, Kung C. A channelopathy mechanism revealed by direct calmodulin activation of TrpV4[J]. Proc Natl Acad Sci U S A, 2015, 112(30): 9400-9405.
doi: 10.1073/pnas.1510602112
|
[29] |
Cho TJ, Matsumoto K, Fano V, et al. TRPV4-pathy manifesting both skeletal dysplasia and peripheral neuropathy: a report of three patients[J]. Am J Med Genet A, 2012, 158A(4): 795-802.
doi: 10.1002/ajmg.a.35268
|
[30] |
Faye E, Modaff P, Pauli R, et al. Combined phenotypes of spondylometaphyseal Dysplasia-Kozlowski type and Charcot-Marie-Tooth disease type 2C secondary to a TRPV4 pathogenic variant[J]. Mol Syndromol, 2019, 10(3): 154-160.
doi: 10.1159/000495778
|
[31] |
Chen DH, Sul Y, Weiss M, et al. CMT2C with vocal cord paresis associated with short stature and mutations in the TRPV4 gene[J]. Neurology, 2010, 75(22): 1968-1975.
doi: 10.1212/WNL.0b013e3181ffe4bb
pmid: 21115951
|
[32] |
Rahbari R, Wuster A, Lindsay S J, et al. Timing, rates and spectra of human germline mutation[J]. Nat Genet, 2016, 48(2): 126-133.
doi: 10.1038/ng.3469
pmid: 26656846
|