Expert Review

Inherited platelet function disorders: diagnosis, treatment and management

  • Xiaoyan YANG ,
  • Qiuhan BIAN ,
  • Yuanyuan TUO ,
  • Dinghuan WANG ,
  • Jing HUANG
Expand
  • 1. Department of Pediatric Hemotology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
    2. Guizhou Medical University, College of Pediatrics, Guiyang 550004, Guizhou, China

Received date: 2021-11-22

  Online published: 2022-02-11

Abstract

Inherited platelet function disorders (IPFDs) is a rare disorder. The clinical manifestations were heterogeneous, mainly characterized by spontaneous cutaneous and mucosal hemorrhage, menorrhagia, difficulty in hemostasis after trauma, with or without thrombocytopenia. Its incidence has been underestimated due to difficulties in clinical diagnosis. Treatment and management of the disease are also challenging. This study summarized the classification, clinical manifestations, diagnosis, treatment and management of IPFDs, to improve the understanding of IPFDs and provide reference for diagnosis, treatment and management of IPFDs for front-line pediatricians.

Cite this article

Xiaoyan YANG , Qiuhan BIAN , Yuanyuan TUO , Dinghuan WANG , Jing HUANG . Inherited platelet function disorders: diagnosis, treatment and management[J]. Journal of Clinical Pediatrics, 2022 , 40(2) : 87 -94 . DOI: 10.12372/jcp.2022.21e1618

References

[1] Bolton-Maggs PH, Chalmers EA, Collins PW, et al. A review of inherited platelet disorders with guidelines for their management on behalf of the UKHCDO[J]. Br J Haematol, 2006, 135(5):603-633.
[2] Mohan G, Malayala SV, Mehta P, et al. A comprehensive review of congenital platelet disorders, thrombocytopenias and thrombocytopathies[J]. Cureus, 2020, 312(10):e11275.
[3] Dorgalaleh A, Tabibian S, Shamsizadeh M. Inherited platelet function disorders (IPFDs)[J]. Clin Lab, 2017, 63(1):1-13.
[4] Nava T, Rivard GE, Bonnefoy A. Challenges on the diagnostic approach of inherited platelet function disorders: Is a paradigm change necessary?[J]. Platelets, 2018, 29(2):148-155.
[5] Gresele P, Bury L, Falcinelli E. Inherited platelet function disorders: algorithms for phenotypic and genetic investigation[J]. Semin Thromb Hemost, 2016, 42(3):292-305.
[6] Gresele P, Falcinelli E, Bury L. Inherited platelet function disorders diagnostic approach and management[J]. Hamostaseologie, 2016, 36(4):265-278.
[7] Palma-Barqueros V, Revilla N, Sánchez A, et al. Inherited platelet disorders: an updated overview[J]. Int J Mol Sci, 2021, 22(9):4521.
[8] Ballmaier M, Germeshausen M. Congenital amega-karyocytic thrombocytopenia: clinical presentation, diagnosis, and treatment[J]. Semin Thromb Hemost, 2011, 37(6):673-681.
[9] Germeshausen M, Ballmaier M. CAMT-MPL: congenital amegakaryocytic thrombocytopenia caused by MPL mutations - heterogeneity of a monogenic disorder - a comprehensive analysis of 56 patient[J]. Haematologica, 2021, 106(9):2439-2448.
[10] Pecci A, Balduini CL. Inherited thrombocytopenias: an updated guide for clinicians[J]. Blood Rev, 2021, 48:100784.
[11] Thompson AA, Woodruff K, Feig SA. Congenital thrombocytopenia and radio-ulnar synostosis: a new familial syndrome[J]. Br J Haematol, 2001, 113(4):866-870.
[12] Nurden AT, Nurden P. Inherited thrombocytopenias: history, advances and perspectives[J]. Haematologica, 2020, 105(8):2004-2019.
[13] Lacruz RS, Feske S. Diseases caused by mutations in ORAI1 and STIM1[J]. Ann N Y Acad Sci, 2015, 1356(1):45-79.
[14] Monteiro M, Almeida L, Morais M. Bernard Soulier syndrome: a rare, frequently misdiagnosed and poorly managed bleeding disorder[J]. BMJ Case Rep, 2021, 14(8):e243518.
[15] Andrews RK, Berndt MC. Bernard-Soulier syndrome: an update[J]. Semin Thromb Hemost, 2013, 39(6):656-662.
[16] Favier M, Bordet JC, Favier R, et al. Mutations of the integrin alphaIIb/beta3 intracytoplasmic salt bridge cause macrothrombocytopenia and enlarged platelet alpha-granules[J]. Am J Hematol, 2018, 93(2):195-204.
[17] Morais S, Oliveira J, Lau C, et al. αIIbβ3 variants in ten families with autosomal dominant macrothrombocytopenia: Expanding the mutational and clinical spectrum[J]. PLoS One, 2020, 15(12):e0235136.
[18] Luo XJ, Cao K, Liu J, et al. Gene analysis and clinical features of MYH9-related disease[J]. Zhonghua Er Ke Za Zhi, 2021, 59(11):957-962.
[19] Jiang J, Zhou J, Wei M, et al. Clinical and molecular characteristics of Wiskott-Aldrich Syndrome in five unrelated Chinese families[J]. Scand J Immunol, 2022, 95(1):e13115.
[20] Blancas-Galicia L, Escamilla-Quiroz C, Yamazaki-Nakashimada MA. Wiskott-Aldrich syndrome: an updated review[J]. Rev Alerg Mex, 2011, 58(4):213-218.
[21] Levin C, Koren A, Pretorius E, et al. Deleterious mutation in the FYB gene is associated with congenital autosomal recessive small-platelet thrombocytopenia[J]. J Thromb Haemost, 2015, 13(7):1285-1292.
[22] Spindler M, van Eeuwijk JMM, Schurr Y, et al. ADAP deficiency impairs megakaryocyte polarization with ectopic proplatelet release and causes microthrombocytopenia[J]. Blood, 2018, 132(6):635-646.
[23] Brigida I, Zoccolillo M, Cicalese MP, et al. T-cell defects in patients with ARPC1B germline mutations account for combined immunodeficiency[J]. Blood, 2018, 132(22):2362-2374.
[24] Kahr WH, Pluthero FG, Elkadri A, et al. Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease[J]. Nat Commun, 2017, 8:14816.
[25] Marconi C, Di Buduo CA, LeVine K, et al. Loss-of-function mutations in PTPRJ cause a new form of inherited thrombocytopenia[J]. Blood, 2019, 133(12):1346-1357.
[26] Sims MC, Mayer L, Collins JH, et al. Novel manifestations of immune dysregulation and granule defects in gray platelet syndrome[J]. Blood, 2020, 136(17):1956-1967.
[27] Pluthero FG, Kahr WHA. Gray platelet syndrome: NBEAL2 mutations are associated with pathology beyond megakaryocyte and platelet function defects[J]. J Thromb Haemost, 2021, 19(2):318-322.
[28] Liang M, Soomro A, Tasneem S, et al. Enhancer-gene rewiring in the pathogenesis of Quebec platelet disorder[J]. Blood, 2020, 136(23):2679-2690.
[29] Frontini M. Breaking barriers: Quebec platelet disorder[J]. Blood, 2020, 136(23):2603-2604.
[30] Bastida JM, Morais S, Palma-Barqueros V, et al. Identification of novel variants in ten patients with Hermansky-Pudlak syndrome by high-throughput sequencing[J]. Ann Med, 2019, 51(2):141-148.
[31] Merideth MA, Introne WJ, Wang JA, et al. Genetic variants associated with Hermansky- Pudlak syndrome[J]. Platelets, 2020, 31(4):544-547.
[32] Huizing M, Malicdan MCV, Wang JA, et al. Towards the targeted management of Chediak-Higashi syndrome[J]. Orphanet J Rare Dis, 2014, 9:132.
[33] Castano-Jaramillo LM, Lugo-Reyes SO, Cruz Munoz ME, et al. Diagnostic and therapeutic caveats in Griscelli syndrome[J]. Scand J Immunol, 2021, 93(6):e13034.
[34] Nurden A. Profiling the genetic and molecular cha-racteristics of glanzmann thrombasthenia: can it guide current and future therapies?[J]. J Blood Med, 2021, 12:581-599.
[35] Botero JP, Lee K, Branchford BR, et al. Glanzmann thrombasthenia: genetic basis and clinical correlates[J]. Haematologica, 2020, 105(4):888-894.
[36] Jandrot-Perrus M, Hermans C, Mezzano D. Platelet glycoprotein VI genetic quantitative and qualitative defects[J]. Platelets, 2019, 30(6):708-713.
[37] Noris P, Guidetti GF, Conti V, et al. Autosomal dominant thrombocytopenias with reduced expression of glycoprotein Ia[J]. Thromb Haemost, 2006, 95(3):483-489.
[38] Cattaneo M. The platelet P2Y12 receptor for adenosine diphosphate: congenital and drug-induced defects[J]. Blood, 2011, 117(7):2102-2112.
[39] Palma-Barqueros V, Bohdan N, Revilla N, et al. PTGS1 gene variations associated with bleeding and platelet dysfunction[J]. Platelets, 2021, 32(5):710-716.
[40] Palma-Barqueros V, Crescente M, de la Morena ME, et al. A novel genetic variant in PTGS1 affects N-glycosylation of cyclooxygenase-1 causing a dominant-negative effect on platelet function and bleeding diajournal[J]. Am J Hematol, 2021, 96(3):E83-E88.
[41] Rodeghiero F, Tosetto A, Abshire T, et al. ISTH/SSC joint VWF and Perinatal/Pediatric Hemostasis Subcommittees Working Group. ISTH/SSC bleeding assessment tool: a standardized questionnaire and a proposal for a new bleeding score for inherited bleeding disorders[J]. J Thromb Haemost, 2010, 8(9):2063-2065.
[42] Federici AB, Bucciarelli P, Castaman G, et al. The bleeding score predicts clinical outcomes and replacement therapy in adults with von Willebrand disease[J]. Blood, 2014, 123(26):4037-4044.
[43] Mathews N, Rivard GE, Bonnefoy A. Glanzmann thrombasthenia: perspectives from clinical practice on accurate diagnosis and optimal treatment strategies[J]. J Blood Med, 2021, 12:449-463.
[44] Lambert MP. Inherited platelet disorders: a modern approach to evaluation and treatments[J]. Hematol Oncol Clin North Am, 2019, 33(3):471-487.
[45] Leissinger C, Carcao M, Gill JC, et al. Desmopressin (DDAVP) in the management of patients with congenital bleeding disorders[J]. Haemophilia, 2014, 20(2):158-167.
[46] Poon MC. The use of recombinant activated factor VII in patients with Glanzmann’s thrombasthenia[J]. Thromb Haemost, 2021, 121(3):332-340.
[47] Hoffman M, Monroe III DM, Roberts HR. Activated factor VII activates factors IX and X on the surface of activated platelets: thoughts on the mechanism of action of high-dose activated factor VII[J]. Blood Coagul Fibrinolysis, 1998, 9(Suppl 1):S61-S65.
[48] Monroe DM, Hoffman M, Oliver JA, et al. Platelet activity of high-dose factor VIIa is independent of tissue factor[J]. Br J Haematol, 1997, 99(3):542-547.
[49] Oshima K, Imai K, Albert MH, et al. Hematopoietic stem cell transplantation for X-Linked thrombocytopenia with mutations in the WAS gene[J]. J Clin Immunol, 2015, 35(1):15-21.
[50] Mallhi KK, Petrovic A, Ochs HD. Hematopoietic stem cell therapy for Wiskott-Aldrich syndrome: improved outcome and quality of life[J]. J Blood Med, 2021, 12:435-447.
[51] Hacein-Bey Abina S, Gaspar HB, Blondeau J, et al. Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome[J]. JAMA, 2015, 313(15):1550-1563.
Outlines

/