Continuing Medical Education

Research progress in nutritional management of children with spinal muscular atrophy

  • Wenqiao WANG ,
  • Shanshan MAO ,
  • Ming MA
Expand
  • 1. Department of Clinical Nutrition, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health
    2. Department of Neurology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, Zhejiang, China

Received date: 2021-08-30

  Online published: 2022-03-09

Abstract

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease caused by variation in survival motor neuron 1 (SMN1) gene. Due to poor muscle reserves, low physical activity, digestive symptoms and dysphagia, the incidence of undernutrition and overnutrition in SMA children is often significantly higher than that in normal children. Therefore, nutritional management is essential for children with SMA. This paper reviewed the nutritional evaluation, related nutritional problems and nutritional intervention for SMA children.

Cite this article

Wenqiao WANG , Shanshan MAO , Ming MA . Research progress in nutritional management of children with spinal muscular atrophy[J]. Journal of Clinical Pediatrics, 2022 , 40(3) : 235 -240 . DOI: 10.12372/jcp.2022.21e1244

References

[1] Ogino S, Leonard DG, Rennert H, et al. Genetic risk assessment in carrier testing for spinal muscular atrophy[J]. Am J Med Genet, 2002, 110(4): 301-307.
[2] Pearn J. Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy[J]. J Med Genet, 1978, 15(6): 409-413.
[3] Wei X, Tan H, Yang P, et al. Notable carrier risks for individuals having two copies of SMN1 in spinal muscular atrophy families with 2-copy alleles: estimation based on Chinese meta-analysis data[J]. J Genet Couns, 2017, 26(1): 72-78.
[4] Bharucha-Goebel D, Kaufmann P. Treatment advances in spinal muscular atrophy[J]. Curr Neurol Neurosci Rep, 2017, 17(11): 91.
[5] Moore GE, Lindenmayer AW, McConchie GA, et al. Describing nutrition in spinal muscular atrophy: a systematic review[J]. Neuromuscul Disord, 2016, 26(7): 395-404.
[6] 北京医学会罕见病分会, 北京医学会医学遗传学分会, 北京医学会神经病学分会神经肌肉病学组, 等. 脊髓性肌萎缩症多学科管理专家共识[J]. 中华医学杂志, 2019, 99(19): 1460-1467.
[7] Corkins MR, Griggs KC, Groh-Wargo S, et al. Standards for nutrition support: pediatric hospitalized patients[J]. Nutr Clin Pract, 2013, 28(2): 263-276.
[8] McCarthy H, Dixon M, Crabtree I, et al. The development and evaluation of the Screening Tool for the Assessment of Malnutrition in Paediatrics (STAMP©) for use by healthcare staff[J]. J Hum Nutr Diet, 2012, 25(4): 311-318.
[9] Hulst JM, Zwart H, Hop WC, et al. Dutch national survey to test the STRONGkids nutritional risk screening tool in hospitalized children[J]. Clin Nutr, 2010, 29(1): 106-111.
[10] Bertoli S, Foppiani A, De Amicis R, et al. Anthropometric measurement standardization for a multicenter nutrition survey in children with spinal muscular atrophy[J]. Eur J Clin Nutr, 2019, 73(12): 1646-1648.
[11] WHO Multicentre Growth Reference Study Group. Reliability of anthropometric measurements in the WHO Multicentre Growth Reference Study[J]. Acta Paediatr Suppl, 2006, 450: 38-46.
[12] Mehta NM, Newman H, Tarrant S, et al. Nutritional status and nutrient intake challenges in children with spinal muscular atrophy[J]. Pediatr Neurol, 2016, 57: 80-83.
[13] Davis RH, Miller EA, Zhang RZ, et al. Responses to fasting and glucose loading in a cohort of well children with spinal muscular atrophy type II[J]. J Pediatr, 2015, 167(6): 1362-1368.e1.
[14] Li YJ, Chen TH, Wu YZ, et al. Metabolic and nutritional issues associated with spinal muscular atrophy[J]. Nutrients, 2020, 12(12): 3842.
[15] Fosbøl MØ, Zerahn B. Contemporary methods of body composition measurement[J]. Clin Physiol Funct Imaging, 2015, 35(2): 81-97.
[16] Liu J, Yan Y, Xi B, et al. Skeletal muscle reference for Chinese children and adolescents[J]. J Cachexia Sarcopenia Muscle, 2019, 10(1): 155-164.
[17] Dong H, Yan Y, Liu J, et al. Reference centiles for evaluating total body fat development and fat distribution by dual-energy x-ray absorptiometry among children and adolescents aged 3-18 years[J]. Clin Nutr, 2021, 40(3): 1289-1295.
[18] Martinez EE, Quinn N, Arouchon K, et al. Comprehensive nutritional and metabolic assessment in patients with spinal muscular atrophy: opportunity for an individualized approach[J]. Neuromuscul Disord, 2018, 28(6): 512-519.
[19] Baranello G, De Amicis R, Arnoldi MT, et al. Evaluation of body composition as a potential biomarker in spinal muscular atrophy[J]. Muscle Nerve, 2020, 61(4): 530-534.
[20] Sproule DM, Montes J, Montgomery M, et al. Increased fat mass and high incidence of overweight despite low body mass index in patients with spinal muscular atrophy[J]. Neuromuscul Disord, 2009, 19(6): 391-396.
[21] Weber DR, Moore RH, Leonard MB, et al. Fat and lean BMI reference curves in children and adolescents and their utility in identifying excess adiposity compared with BMI and percentage body fat[J]. Am J Clin Nutr, 2013, 98(1): 49-56.
[22] Bertoli S, De Amicis R, Mastella C, et al. Spinal muscular atrophy, types I and II: what are the differences in body composition and resting energy expenditure?[J]. Clin Nutr, 2017, 36(6): 1674-1680.
[23] Burrows T, Goldman S, Rollo M. A systematic review of the validity of dietary assessment methods in children when compared with the method of doubly labelled water[J]. Eur J Clin Nutr, 2020, 74(5): 669-681.
[24] Poruk KE, Davis RH, Smart AL, et al. Observational study of caloric and nutrient intake, bone density, and body composition in infants and children with spinal muscular atrophy type I[J]. Neuromuscul Disord, 2012, 22(11): 966-973.
[25] Zhou Y, Chen J, Gong X, et al. Nutrition status survey of type 2 and 3 spinal muscular atrophy in Chinese population[J]. Nutr Neurosci, 2021, 23: 1-7.
[26] Baranello G, Vai S, Broggi F, et al. Evolution of bone mineral density, bone metabolism and fragility fractures in Spinal Muscular Atrophy (SMA) types 2 and 3[J]. Neuromuscul Disord, 2019, 29(7): 525-532.
[27] Wasserman HM, Hornung LN, Stenger PJ, et al. Low bone mineral density and fractures are highly prevalent in pediatric patients with spinal muscular atrophy regardless of disease severity[J]. Neuromuscul Disord, 2017, 27(4): 331-337.
[28] van Bruggen HW, Wadman RI, Bronkhorst EM, et al. Mandibular dysfunction as a reflection of bulbar involvement in SMA type 2 and 3[J]. Neurology, 2016, 86(6): 552-559.
[29] Messina S, Pane M, De Rose P, et al. Feeding problems and malnutrition in spinal muscular atrophy type II[J]. Neuromuscul Disord, 2008, 18(5): 389-393.
[30] Chen YS, Shih HH, Chen TH, et al. Prevalence and risk factors for feeding and swallowing difficulties in spinal muscular atrophy types II and III[J]. J Pediatr, 2012, 160(3): 447-451.
[31] van der Heul AMB, Wijngaarde CA, Wadman RI, et al. Bulbar problems self-reported by children and adults with spinal muscular atrophy[J]. J Neuromuscul Dis, 2019, 6(3): 361-368.
[32] Choi YA, Suh DI, Chae JH, et al. Trajectory of change in the swallowing status in spinal muscular atrophy type I[J]. Int J Pediatr Otorhinolaryngol, 2020, 130: 109818.
[33] 中华预防医学会儿童保健分会. 中国儿童钙营养专家共识(2019年版)[J]. 中国妇幼健康研究, 2019, 30(3): 262-269.
[34] 罗明, 覃洪金, 黄玉珠, 等. 儿童口腔运动及进食能力评估工具研究进展[J]. 护士进修杂志, 2020, 35(13): 1176-1179.
[35] van den Engel-Hoek L, Erasmus CE, van Bruggen HW, et al. Dysphagia in spinal muscular atrophy type II: more than a bulbar problem?[J]. Neurology, 2009, 73(21): 1787-1791.
[36] Mercuri E, Finkel RS, Muntoni F, et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care[J]. Neuromuscul Disord, 2018, 28(2): 103-115.
[37] Davis RH, Godshall BJ, Seffrood E, et al. Nutritional practices at a glance: spinal muscular atrophy type I nutrition survey findings[J]. J Child Neurol, 2014, 29(11): 1467-1472.
[38] Wang CH, Finkel RS, Bertini ES, et al. Consensus statement for standard of care in spinal muscular atrophy[J]. J Child Neurol, 2007, 22(8): 1027-1049.
[39] Rattanachaiwong S, Singer P. Indirect calorimetry as point of care testing[J]. Clin Nutr, 2019, 38(6): 2531-2544.
[40] Bendavid I, Lobo DN, Barazzoni R, et al. The centenary of the Harris-Benedict equations: how to assess energy requirements best? Recommendations from the ESPEN expert group[J]. Clin Nutr, 2021, 40(3): 690-701.
[41] Amano Y. Estimated basal metabolic rate and maintenance fluid volume in children: a proposal for a new equation[J]. Pediatr Int, 2020, 62(5): 522-528.
[42] Bertoli S, De Amicis R, Bedogni G, et al. Predictive energy equations for spinal muscular atrophy type I children[J]. Am J Clin Nutr, 2020, 111(5): 983-996.
[43] 中国营养学会. 中国居民膳食营养素参考摄入量(2013版) [M]. 北京: 科学出版社, 2014: 652-660.
[44] Deguise MO, Baranello G, Mastella C, et al. Abnormal fatty acid metabolism is a core component of spinal muscular atrophy[J]. Ann Clin Transl Neurol, 2019, 6(8): 1519-1532.
[45] Deguise MO, Chehade L, Tierney A, et al. Low fat diets increase survival of a mouse model of spinal muscular atrophy[J]. Ann Clin Transl Neurol, 2019, 6(11): 2340-2346.
[46] Chou E, Lindeback R, Sampaio H, et al. Nutritional practices in pediatric patients with neuromuscular disorders[J]. Nutr Rev, 2020, 78(10): 857-865.
[47] 中华预防医学会儿童保健分会. 中国儿童维生素A、维生素D临床应用专家共识[J]. 中国儿童保健杂志, 2021, 29(1): 110-116.
[48] Laheij RJ, Sturkenboom MC, Hassing RJ, et al. Risk of community-acquired pneumonia and use of gastric acid-suppressive drugs[J]. JAMA, 2004, 292(16): 1955-1960.
[49] Durkin ET, Schroth MK, Helin M, et al. Early laparoscopic fundoplication and gastrostomy in infants with spinal muscular atrophy type I[J]. J Pediatr Surg, 2008, 43(11): 2031-2037.
[50] Singh NN, Hoffman S, Reddi PP, et al. Spinal muscular atrophy: broad disease spectrum and sex-specific phenotypes[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(4): 166063.
Outlines

/