[1] |
Blazejewski SM, Bennison SA, Smith TH, et al. Neurodevelopmental genetic diseases associated with microdeletions and microduplications of chromosome 17p13.3[J]. Front Genet, 2018, 9: 80.
doi: 10.3389/fgene.2018.00080
pmid: 29628935
|
[2] |
Barros Fontes MI, Dos Santos AP, Rossi Torres F, et al. 17p13.3 microdeletion: insights on genotype-phenotype correlation[J]. Mol Syndromol, 2017, 8 (1): 36-41.
doi: 10.1159/000452753
pmid: 28232781
|
[3] |
于宝生, 马华梅, 卢忠启, 等. 基因重组人生长激素儿科临床规范应用的建议[J]. 中华儿科杂志, 2013, 51(6) : 426-426.
|
[4] |
Baker EK, Brewer CJ, Ferreira L, et al. Further expansion and confirmation of phenotype in rare loss of YWHAE gene distinct from Miller-Dieker syndrome[J]. Am J Med Genet A, 2023, 191 (2): 526-539.
|
[5] |
王高伟, 孔京慧, 张小慢, 等. 17p13.3微缺失综合征1例[J]. 中华医学遗传学杂志, 2023, 40(3): 383-384.
|
[6] |
毛雨鸽, 丁晶, 黄山雅美, 等. 新生儿17p13.3微缺失综合征1例及其家系分析并文献复习[J]. 中国生育健康杂志, 2022, 33(2): 183-185.
|
[7] |
Goh ELK, Zhu T, Yakar S, et al. CrkⅡ participation in the cellular effects of growth hormone and insulin-like growth factor-1: phosphatidylinositol-3 kinase dependent and independent effects[J]. J Biol Chem, 2000, 275 (23): 17683-17692.
doi: 10.1074/jbc.M001972200
pmid: 10748058
|
[8] |
Deodati A, Inzaghi E, Germani D, et al. Crk haploinsufficiency is associated with intrauterine growth retardation and severe postnatal growth failure[J]. Horm Res Paediatr, 2021, 94 (11-12): 456-466.
|
[9] |
Park T-J, Curran T. Crk and Crk-like play essential overlapping roles downstream of disabled-1 in the reelin pathway[J]. J Neurosci, 2008, 28 (50): 13551-13562.
|
[10] |
Noor A, Bogatan S, Watkins N, et al. Disruption of YWHAE gene at 17p13.3 causes learning disabilities and brain abnormalities[J]. Clin Genet, 2018, 93 (2): 365-367.
doi: 10.1111/cge.13056
pmid: 28542865
|
[11] |
Liu X, Bennison SA, Robinson L, et al. Responsible genes for neuronal migration in the chromosome 17p13.3: beyond Pafah1b1(Lis1), Crk and Ywhae(14-3-3ε)[J]. Brain Sci, 2021, 12 (1): 56.
|
[12] |
Gittenberger-de Groot AC, Hoppenbrouwers T, Miquerol L, et al. 14-3-3epsilon controls multiple developmental processes in the mouse heart[J]. Dev Dyn, 2016, 245 (11): 1107-1123.
|
[13] |
Umahara T, Uchihara T, Koyama S, et al. Isoform-specific immunolocalization of 14-3-3 proteins in atherosclerotic lesions of human carotid and main cerebral arteries[J]. J Neurol Sci, 2012, 317 (1): 106-111.
|