精准医学时代中国脊髓性肌萎缩症诊治发展之路
收稿日期: 2022-01-04
网络出版日期: 2022-03-09
基金资助
浙江省“尖兵”“领雁”研发攻关计划项目(2022C03167);浙江省基础公益分析测试项目(LGC21H090004);国家自然科学基金项目(81801490);国家中心自主设计项目-拔尖青年人才培育项目(Q21C0002)
Diagnosis and treatment of spinal muscular atrophy in China in the era of precision medicine
Received date: 2022-01-04
Online published: 2022-03-09
脊髓性肌萎缩症(SMA)是一种常染色体隐性遗传神经肌肉疾病,因运动神经元存活基因(SMN)1缺失/变异导致SMN蛋白缺乏致病,临床表现为进行性肌萎缩与肌无力,并常伴呼吸、消化、营养、骨骼等多系统器官损害,属严重致死致残性遗传病,2018年被纳入国家《第一批罕见病目录》。近年来随着精准医学的发展,SMA的药物治疗获得前所未有的进展,中国也已有两种疾病修正治疗药物应用于临床实践。国内外诊疗共识对SMA的标准化管理均提出新规范,尤其强调以多学科团队作为基础开展全病程管理。药物治疗时代SMA精准诊治与个体化管理的新进展,将为中国SMA的发展之路带来更好的前景。
毛姗姗 . 精准医学时代中国脊髓性肌萎缩症诊治发展之路[J]. 临床儿科杂志, 2022 , 40(3) : 165 -169 . DOI: 10.12372/jcp.2022.22e0022
Spinal muscular atrophy (SMA) is an autosomal recessive genetic neuromuscular disease, which is caused by the lack of SMN protein due to the deletion/variation of the survival motor neuron gene (SMN) 1 gene. Its clinical manifestations are progressive muscular atrophy and muscle weakness, often accompanied by damage to multiple system organs such as respiration, digestion, nutrition and orthopedics, etc., and it is a serious fatal and disabling genetic disease. In 2018, SMA was included in the National List of the First Batch of Rare Diseases. The development of precision medicine has witnessed unprecedented progress in the treatment of SMA, and China has also had two disease-modifying treatment drugs used in clinical practice. In recent years, domestic and foreign diagnosis and treatment consensuses have put forward new norms for the standardized care of SMA, with particular emphasis on the entire course of disease management based on the collaboration diagnosis and treatment of multi-disciplinary team. The new advances in precise diagnosis and treatment and individualized management of SMA in the era of drug therapy will bring better prospects for the development of SMA in China.
| [1] | Groen EJN, Talbot K, Gillingwater TH. Advances in therapy for spinal muscular atrophy: promises and challenges[J]. Nat Rev Neurol, 2018, 14(4): 214-224. |
| [2] | Verhaart IEC, Robertson A, Wilson IJ, et al. Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy - a literature review[J]. Orphanet J Rare Dis, 2017, 12(1): 124. |
| [3] | Su YN, Hung CC, Lin SY, et al. Carrier screening for spinal muscular atrophy (SMA) in 107,611 pregnant women during the period 2005-2009: a prospective population-based cohort study[J]. PLoS One, 2011, 6(2): e17067. |
| [4] | Hamilton G, Gillingwater TH. Spinal muscular atrophy: going beyond the motor neuron[J]. Trends Mol Med, 2013, 19: 40-50. |
| [5] | Wijngaarde CA, Veldhoen ES, van Eijk RPA, et al. Natural history of lung function in spinal muscular atrophy[J]. Orphanet J Rare Dis, 2020, 15(1): 88. |
| [6] | Oskoui M, Levy G, Garland CJ, et al. The changing natural history of spinal muscular atrophy type 1[J]. Neurology, 2007, 69(20): 1931-1936. |
| [7] | Sapaly D, Delers P, Coridon J, et al. The small-molecule flunarizine in spinal muscular atrophy patient fibroblasts impacts on the gemin components of the SMN complex and TDP43, an RNA-binding protein relevant to motor neuron diseases[J]. Front Mol Biosci, 2020, 7: 55. |
| [8] | Wirth B. Spinal muscular atrophy: in the challenge lies a solution[J]. Trends Neurosci, 2021, 44(4): 306-322. |
| [9] | 冯艺杰, 毛姗姗. 脊髓性肌萎缩症的药物治疗研究进展[J]. 中华儿科杂志, 2020, 58(10): 858-861. |
| [10] | Finkel RS, Mercuri E, Darras BT, et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy[J]. N Engl J Med, 2017, 377(18): 1723-1732. |
| [11] | Mercuri E, Darras BT, Chiriboga CA, et al. Nusinersen versus sham control in Later Onset spinal muscular atrophy[J]. N Engl J Med, 2018, 378(7): 625-635. |
| [12] | Mercuri E, Deconinck N, Mazzone ES, et al. Safety and efficacy of once-daily risdiplam in type 2 and non-ambulant type 3 spinal muscular atrophy (SUNFISH part 2): a phase 3, double-blind, randomised, placebo-controlled trial[J]. Lancet Neurol, 2022, 21(1): 42-52. |
| [13] | Baranello G, Darras BT, Day JW, et al. Risdiplam in type 1 spinal muscular atrophy[J]. N Engl J Med, 2021, 384(10): 915-923. |
| [14] | Naveed A, Calderon H. Onasemnogene abeparvovec (AVXS-101) for the treatment of spinal muscular atrophy[J]. J Pediatr Pharmacol Ther, 2021, 26(5): 437-444. |
| [15] | Al-Zaidy SA, Kolb SJ, Lowes L, et al. AVXS-101 (onasemnogene abeparvovec) for SMA1: comparative study with a prospective natural history cohort[J]. J Neuromuscul Dis, 2019, 6(3): 307-317. |
| [16] | Mercuri E, Finkel RS, Muntoni F, et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care[J]. Neuromuscul Disord, 2018, 28(2): 103-115. |
| [17] | Wang CH, Finkel RS, Bertini ES, et al. Consensus statement for standard of care in spinal muscular atrophy[J]. J Child Neurol, 2007, 22(8): 1027-1049. |
| [18] | 北京医学会罕见病分会, 北京医学会医学遗传学分会, 北京医学会神经病学分会神经肌肉病学组. 脊髓性肌萎缩症多学科管理专家共识[J]. 中华医学杂志, 2019, 99(19): 1460-1467. |
| [19] | Kolb SJ, Kissel JT. Spinal muscular atrophy[J]. Neurol Clin, 2015, 33(4): 831-846. |
| [20] | Lin CW, Kalb SJ, Yeh WS. Delay in diagnosis of spinal muscular atrophy: a systematic literature review[J]. Pediatr Neurol, 2015, 53(4): 293-300. |
| [21] | Dangouloff T, Vrščaj E, Servais L, et al. SMA NBS World Study Group. Newborn screening programs for spinal muscular atrophy worldwide: Where we stand and where to go[J]. Neuromuscul Disord, 2021, 31(6): 574-582. |
| [22] | 北京医学会医学遗传学分会, 北京罕见病诊疗与保障学会. 脊髓性肌萎缩症遗传学诊断专家共识[J]. 中华医学杂志, 2020, 100(40): 3130-3140. |
/
| 〈 |
|
〉 |