新生儿糖尿病的诊治思路
收稿日期: 2022-01-19
网络出版日期: 2022-05-13
Diagnostic approach of neonatal diabetes mellitus
Received date: 2022-01-19
Online published: 2022-05-13
新生儿糖尿病(neonatal diabetes mellitus,NDM)是一种罕见的单基因病,临床表现隐匿,临床表型与基因型异质性大,容易延误诊断。近年来,随着基因检测技术的发展,越来越多的致病基因逐渐被认识,目前已知的有30多种基因变异可引起NDM,不同亚型的NDM在临床表现、治疗和转归等方面有所不同。染色体6q24印记区域的基因变异或甲基化异常是暂时性新生儿糖尿病(transient neonatal diabetes mellitus,TNDM)最常见的原因,ATP敏感性钾通道(KATP)基因(KCNJ11、ABCC8)变异是持续性新生儿糖尿病(persistent neonatal diabetes mellitus,PNDM)的最常见原因。NDM常需胰岛素替代治疗,而大约90%的KCNJ11或ABCC8变异的NDM患儿口服磺脲类药物治疗可维持稳定血糖水平,早期治疗还可逆转部分KCNJ11变异导致的神经发育迟缓,同时可增加从胰岛素转换至磺脲类药物治疗的成功率。早期明确遗传学诊断和分型有助于实现精准个体化治疗,判断预后。本文就NDM的基因型-临床表型及治疗、管理等进行归纳、总结,为儿科医生在临床诊疗中早期发现、早期诊断以及精准治疗提供参考。
王春林 , 卢惠飞 . 新生儿糖尿病的诊治思路[J]. 临床儿科杂志, 2022 , 40(5) : 328 -333 . DOI: 10.12372/jcp.2022.22e0114
Neonatal diabetes mellitus (NDM) is a rare monogenic disease with extensive heterogeneity in clinical phenotypes and genotypes on hidden clinical manifestations, which can easily delay diagnosis. In recent years, with the development of gene detection technology, more pathogenic genes have been gradually recognized. At present, more than 30 gene mutations are known as varied subtypes of NDM for the differences on clinical manifestations and outcomes. Genetic variation or abnormal methylation in chromosome 6q24 imprinting region is the commonest cause of transient neonatal diabetes mellitus (TNDM), and KATP gene mutations (KCNJ11, ABCC8) are the commonest cause of persistent neonatal diabetes mellitus (PNDM). About 90% of NDM children with KCNJ11 or ABCC8 mutations received oral sulfonylureas to maintain stable blood glucose levels. Early treatment can reverse part of the neurodevelopmental delay caused by KCNJ11 mutations, and improve the success rate of insulin conversion to sulfonylureas. Early accurate genetic diagnosis and typing are helpful for precise individualized treatment and prognosis determination. In this paper, genotype-phenotype, treatment and management of NDM were summarized, providing reference for pediatricians in early detection and diagnosis, precise treatment in clinical practice.
Key words: monogenic; diabetes; diagnosis approach; neonatal
[1] | 中华医学会儿科学分会内分泌遗传代谢学组. 儿童单基因糖尿病临床诊断与治疗专家共识[J]. 中华儿科杂志, 2019, 57(7): 508-514. |
[2] | Lemelman MB, Letourneau L, Greeley SAW. Neonatal diabetes mellitus: an update on diagnosis and management[J]. Clin Perinatol, 2018, 45(1): 41-59. |
[3] | Hattersley AT, Greeley SAW, Polak M, et al. ISPAD Clinical Practice Consensus Guidelines 2018: The diagnosis and management of monogenic diabetes in children and adolescents[J]. Pediatr Diabetes, 2018, 19 Suppl 27: 47-63. |
[4] | Barbetti F, D'Annunzio G. Genetic causes and treatment of neonatal diabetes and early childhood diabetes[J]. Best Pract Res Clin Endocrinol Metab, 2018, 32(4): 575-591. |
[5] | Rabbone I, Barbetti F, Gentilella R, et al. Insulin therapy in neonatal diabetes mellitus: a review of the literature[J]. Diabetes Res Clin Pract, 2017, 129: 126-135. |
[6] | Yahaya TO, Anyebe DA. Genes predisposing to neonatal diabetes mellitus and pathophysiology: Current findings[J]. J Neonatal Perinatal Med, 2020, 13(4): 543-553. |
[7] | Letourneau LR, Carmody D, Wroblewski K, et al. Diabetes presentation in infancy: High risk of diabetic ketoacidosis[J]. Diabetes Care, 2017, 40(10): e147-e148. |
[8] | 章淼滢, 罗飞宏. 儿童单基因糖尿病诊治进展及诊断策略[J]. 诊断学理论与实践, 2021, 20(3): 229-233. |
[9] | Temple I K, Shield J P. Transient neonatal diabetes, a disorder of imprinting[J]. J Med Genet, 2002, 39(12): 872-875. |
[10] | Beltrand J, Busiah K, Vaivre-Douret L, et al. Neonatal diabetes mellitus[J]. Front Pediatr, 2020, 8: 540718. |
[11] | Du Y T, Moore L, Poplawski N K, et al. Familial GATA6 mutation causing variably expressed diabetes mellitus and cardiac and renal abnormalities[J]. Endocrinol Diabetes Metab Case Rep, 2019, 2019: 19-0022. |
[12] | 朱琼, 袁珂, 王春林, 等. FOXP3基因突变致X连锁多内分泌腺病肠病伴免疫失调综合征二例[J]. 中华医学遗传学杂志, 2018, 35(3): 389-392. |
[13] | Busiah K, Auger J, Fauret-Amsellem AL, et al. Differentiating transient idiopathic hyperglycaemia and neonatal diabetes mellitus in preterm infants[J]. Horm Res Paediatr, 2015, 84(1): 68-72. |
[14] | Zhang H, Zhong X, Huang Z, et al. Sulfonylurea for the treatment of neonatal diabetes owing to KATP-channel mutations: a systematic review and meta-analysis[J]. Oncotarget, 2017, 8(64): 108274-108285. |
[15] | 中华医学会儿科学分会内分泌遗传代谢学组,《中华儿科杂志》编辑委员会. 儿童及青少年糖尿病的胰岛素治疗指南(2010年版)[J]. 中华儿科杂志, 2010, 48(6): 431-435. |
[16] | Babiker T, Vedovato N, Patel K, et al. Successful transfer to sulfonylureas in KCNJ11 neonatal diabetes is determined by the mutation and duration of diabetes[J]. Diabetologia, 2016, 59(6): 1162-1166. |
[17] | Bowman P, Sulen Å, Barbetti F, et al. Effectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: an international cohort study[J]. Lancet Diabetes Endocrinol, 2018, 6(8): 637-646. |
[18] | Li X, Cheng Q, Ding Y, et al. TRMA syndrome with a severe phenotype, cerebral infarction, and novel compound heterozygous SLC19A2 mutation: a case report[J]. BMC Pediatr, 2019, 19(1): 233. |
[19] | Yeung RO, Hannah-Shmouni F, Niederhoffer K, et al. Not quite type 1 or type 2, what now? Review of monogenic, mitochondrial, and syndromic diabetes[J]. Rev Endocr Metab Disord, 2018, 19(1): 35-52. |
[20] | Ben-Skowronek I. IPEX Syndrome: Genetics and Treatment Options[J]. Genes (Basel), 2021, 12(3): 323. |
[21] | Burroughs L M, Torgerson T R, Storb R, et al. Stable hematopoietic cell engraftment after low-intensity nonmyeloablative conditioning in patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome[J]. J Allergy Clin Immunol, 2010, 126(5): 1000-1005. |
[22] | Chen S, Du K, Zou C. Current progress in stem cell therapy for type 1 diabetes mellitus[J]. Stem Cell Res Ther, 2020, 11(1): 275. |
[23] | London S, De Franco E, Elias-Assad G, et al. Case report: neonatal diabetes mellitus caused by a novel GLIS3 mutation in twins[J]. Front Endocrinol (Lausanne), 2021, 12: 673755. |
/
〈 |
|
〉 |