综合报道

CAR-T细胞治疗儿童复发性B系急性淋巴细胞白血病所致细胞因子释放综合征临床分析

  • 朱秋皎 ,
  • 潘涛 ,
  • 柏振江 ,
  • 丁欣 ,
  • 李莺
展开
  • 1.苏州大学附属儿童医院 重症医学科 (江苏苏州 215000)
    2.苏州大学附属儿童医院 新生儿科(江苏苏州 215000)

收稿日期: 2021-04-08

  网络出版日期: 2022-11-10

基金资助

国家自然科学基金项目(81671967)

Clinical analysis of severe cytokine release syndrome caused by CAR-T cell therapy in children's intensive care unit

  • Qiujiao ZHU ,
  • Tao PAN ,
  • Zhenjiang BAI ,
  • Xin DING ,
  • Ying LI
Expand
  • 1. Intensive Care Unit, Children's Hospital of Soochow University, Suzhou 215000, Jiangsu, China
    2. Neonatology Department, Children's Hospital of Soochow University, Suzhou 215000, Jiangsu, China

Received date: 2021-04-08

  Online published: 2022-11-10

摘要

目的 探讨CAR-T细胞疗法治疗儿童复发性B系急性淋巴细胞白血病(B-ALL)时出现的细胞因子释放综合征(CRS)的临床特征。方法 回顾分析2019年1月至2020年6月收治的14例CAR-T细胞治疗的复发性B-ALL患儿的临床资料。结果 14例复发性B-ALL输注CAR-T细胞后,9例发生严重CRS,11例患儿出现血流动力学不稳,5例需要机械通气,10例有神经系统症状,7例出现肝损害。14例患儿均使用托珠单抗治疗,7例静脉使用糖皮质激素,5例行血液净化治疗。3例患儿死亡,11例在2周内好转。结论 CRS是CAR-T细胞输注后的常见毒性反应,可出现多器官功能障碍,CRS的严重程度与细胞因子IL-6、IFN-γ水平呈正相关。托珠单抗和激素是最主要的治疗方法,血液净化也是CRS的一种特殊治疗方法。

本文引用格式

朱秋皎 , 潘涛 , 柏振江 , 丁欣 , 李莺 . CAR-T细胞治疗儿童复发性B系急性淋巴细胞白血病所致细胞因子释放综合征临床分析[J]. 临床儿科杂志, 2022 , 40(11) : 848 -853 . DOI: 10.12372/jcp.2022.21e0516

Abstract

Objective To analyze the clinical features of severe cytokine release syndrome (sCRS) in children with relapsed B lineage acute lymphoblastic leukemia (B-ALL) treated by CAR-T cell therapy, and to summarize their treatment methods. Methods The clinical data of 14 cases of CAR-T cell therapy relapsed B-ALL children admitted to the intensive care unit from January 2019 to June 2020 were collected, and retrospectively analyzed. Results After CAR-T cell infusion, nine cases developed sCRS, eleven children developed hemodynamic instability, five cases required mechanical ventilation, ten cases had neurological symptoms, and seven cases had liver damage. All 14 patients were treated with tocilizumab, some of them were given glucocorticoids, and five patients were treated with continuous blood purification. Three patients died, and eleven patients recovered within two weeks. Conclusion CRS is a common toxic reaction after CAR-T cell infusion, which can cause multiple organ dysfunction. The severity of CRS was positively correlated with the levels of cytokines IL-6 and IFN-γ. Tocilizumab and corticosteroids are the main treatments, and the blood purification can also be used as a special treatment for CRS.

参考文献

[1] Inaba H, Mullighan CG. Pediatric acute lymphoblastic leukemia[J]. Haematologica, 2020, 105(11): 2524-2539.
[2] Nguyen K, Devidas M, Cheng SC, et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children’s Oncology Group study[J]. Leukemia, 2008, 22(12): 2142-2150.
[3] Pehlivan KC, Duncan BB, Lee DW. CAR-T cell therapy for acute lymphoblastic leukemia: transforming the treatment of relapsed and refractory disease[J]. Curr Hematol Malig Rep, 2018, 13(5): 396-406.
[4] Rosenbaum L. Tragedy, perseverance, and chance - the story of CAR-T therapy[J]. N Engl J Med, 2017, 377(14): 1313-1315.
[5] Lee DW, Santomasso BD, Locke FL, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells[J]. Biol Blood Marrow Transplant, 2019, 25(4): 625-638.
[6] Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome[J]. Blood, 2014, 124(2): 188-195.
[7] Chavez JC, Bachmeier C, Kharfan-Dabaja MA. CART-cell therapry for B-cell lymphomas: clinical trial results of available products[J]. Ther Adv Hematol, 2019, 10: 2040620719841581.
[8] Li L, Liu J, Xu M, et al. Treatment response, survival, safety, and predictive factors to chimeric antigen receptor T cell therapy in Chinese relapsed or refractory B cell acute lymphoblast leukemia patients[J]. Cell Death Dis, 2020, 11(3): 207.
[9] Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia[J]. N Engl J Med, 2014, 371(16): 1507-1517.
[10] Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia[J]. N Engl J Med, 2018, 378(5): 439-448.
[11] Santomasso B, Bachier C, Westin J, et al. The other side of CAR T-cell therapy: cytokine release syndrome, neurologic toxicity, and financial burden[J]. Am Soc Clin Oncol Educ Book, 2019, 39: 433-444.
[12] Frey NV, Porter DL. Cytokine release syndrome with novel therapeutics for acute lymphoblastic leukemia[J]. Hematology Am Soc Hematol Educ Program, 2016, 2016(1): 567-572.
[13] Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome[J]. Blood, 2014, 124(2): 188-195.
[14] Frey N, Porter D. Cytokine release syndrome with chimeric antigen receptor T cell therapy[J]. Biol Blood Marrow Transplant, 2019, 25(4): e123-e127.
[15] Hirayama AV, Turtle CJ. Toxicities of CD19 CAR-T cell immunotherapy[J]. Am J Hematol, 2019, 94(S1): S42-S49.
[16] Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management[J]. Blood, 2016, 127(26): 3321-3330.
[17] Oved JH, Barrett DM, Teachey DT. Cellular therapy: immune-related complications[J]. Immunol Rev, 2019, 290(1): 114-126.
[18] Grigor EJM, Fergusson D, Kekre N, et al. Risks and benefits of chimeric antigen receptor T-cell (CAR-T) therapy in cancer: a systematic review and meta-analysis[J]. Transfus Med Rev, 2019, 33(2): 98-110.
[19] Gust J, Finney OC, Li D, et al. Glial injury in neurotoxicity after pediatric CD19-directed chimeric antigen receptor T cell therapy[J]. Ann Neurol, 2019, 86(1): 42-54.
[20] Sheth VS, Gauthier J. Taming the beast: CRS and ICANS after CAR T-cell therapy for ALL[J]. Bone Marrow Transplant, 2021, 56(3): 552-566.
[21] Neelapu SS. Managing the toxicities of CAR T-cell therapy[J]. Hematol Oncol, 2019, 37(Suppl 1): 48-52.
[22] Gust J, Hay KA, Hanafi LA, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells[J]. Cancer Discov, 2017, 7(12): 1404-1419.
[23] Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial[J]. Lancet, 2015, 385(9967): 517-528.
[24] Scheller J, Chalaris A, Schmidt-Arras D, et al. The pro- and anti-inflammatory properties of the cytokine interleukin-6[J]. Biochim Biophys Acta, 2011, 1813(5): 878-888.
[25] Shank BR, Do B, Sevin A, et al. Chimeric antigen receptor T cells in hematologic malignancies[J]. Pharmacotherapy, 2017, 37(3): 334-345.
[26] Kotch C, Barrett D, Teachey DT. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome[J]. Expert Rev Clin Immunol, 2019, 15(8): 813-822.
[27] Brudno JN, Kochenderfer JN. Recent advance in CAR T-cell toxicity: mechanisms, manifestations and management[J]. Blood Rev, 2019, 34: 45-55.
[28] Fischer JW, Bhattarai N. CAR-T cell therapy: mechanism, management, and mitigation of inflammatory toxicities[J]. Front Immunol, 2021, 12: 693016.
[29] Liu Y, Chen X, Wang D, et al. Hemofiltration successfully eliminates severe cytokine release syndrome following CD19 CAR-T-cell therapy[J]. J Immunother, 2018, 41(9): 406-410.
[30] Xiao X, He X, Li Q, et al. Plasma exchange can be an alternative therapeutic modality for severe cytokine release syndrome after chimeric antigen receptor-T cell infusion: a case report[J]. Clin Cancer Res, 2019, 25(1): 29-34.
文章导航

/