继续医学教育

新生儿无乳链球菌败血症临床相关研究进展

  • 陈标 ,
  • 赵瑞秋
展开
  • 重庆医科大学附属儿童医院感染科 儿童发育疾病研究教育部重点实验室 国家儿童健康与疾病临床医学研究中心 儿童发育重大疾病国家国际科技合作基地 儿科学重庆市重点实验室(重庆 400014)

收稿日期: 2021-12-24

  网络出版日期: 2022-11-10

Clinical research progress on neonatal sepsis induced by Streptococcus agalactiae

  • Biao CHEN ,
  • Ruiqiu ZHAO
Expand
  • Department of Infection, Children’s Hospital of Chongqing Medical University; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China

Received date: 2021-12-24

  Online published: 2022-11-10

摘要

败血症是导致新生儿死亡的重要原因。无乳链球菌是新生儿败血症的常见病原。近年来,在新生儿无乳链球菌败血症的诊疗及预防方面取得了一定的进展。西方国家相继出台、更新了相应临床指南,促进了新生儿无乳链球菌败血症的临床诊治水平的进步。文章就国内外新生儿无乳链球菌败血症临床相关研究进展进行简要介绍。

本文引用格式

陈标 , 赵瑞秋 . 新生儿无乳链球菌败血症临床相关研究进展[J]. 临床儿科杂志, 2022 , 40(11) : 875 -880 . DOI: 10.12372/jcp.2022.21e1762

Abstract

Sepsis is a key cause of neonatal death, andstreptococcus agalactiae is a common pathogen of neonatal sepsis. In recent years, some progress has been made in the diagnosis, treatment and prevention of neonatal sepsis induced by Streptococcus agalactiae. Western countries have issued and updated corresponding clinical guidelines, which have promoted the development of clinical diagnosis and treatment of this disease. This article gives a brief introduction the clinical research progress of neonatal sepsis induced by Streptococcus agalactiae at home and abroad.

参考文献

[1] Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, et al. The global burden of paediatric and neonatal sepsis: a systematic review[J]. Lancet Respir Med, 2018, 6(3): 223-230.
[2] Raabe VN, Shane AL. Group B Streptococcus (Streptococcus Agalactiae)[J]. Microbiol Spectr, 2019, 7(2): 10.1128/mierobiolspec. GPP3-007-2018..
[3] Madrid L, Seale AC, Kohli-Lynch M, et al. Infant group B streptococcal disease incidence and serotypes worldwide: systematic review and meta-analyses[J]. Clin Infect Dis, 2017, 65(suppl_2): s160-s172.
[4] Nanduri SA, Petit S, Smelser C, et al. Epidemiology of invasive early-onset and late-onset group B Streptococcal disease in the United States, 2006 to 2015: multistate laboratory and population-based surveillance[J]. JAMA Pediatr, 2019, 173(3): 224-233.
[5] Teatero S, Ferrieri P, Fittipaldi N. Serotype IV sequence type 468 group B Streptococcus neonatal invasive disease, minnesota, USA[J]. Emerg Infect Dis, 2016, 22(11): 1937-1940.
[6] Guan X, Mu X, Ji W, et al. Epidemiology of invasive group B Streptococcal disease in infants from urban area of South China, 2011-2014 [J]. BMC Infect Dis, 2018, 18(1): 14.
[7] Seale AC, Bianchi-Jassir F, Russell NJ, et al. Estimates of the burden of Group B Streptococcal disease worldwide for pregnant women, stillbirths, and children[J]. Clin Infect Dis, 2017, 65(suppl_2): s200-s219.
[8] Ji W, Liu H, Madhi SA, et al. Clinical and molecular epidemiology of invasive group B Streptococcus disease among infants, China[J]. Emerg Infect Dis, 2019, 25(11): 2021-2030.
[9] Ding Y, Wang Y, Hsia Y, et al. Systematic review and meta-analyses of incidence for group B Streptococcus disease in infants and antimicrobial resistance, China[J]. Emerg Infect Dis, 2020, 26(11): 2651-2659.
[10] Braye K, Foureur M, de Waal K, et al. Epidemiology of neonatal early-onset sepsis in a geographically diverse Australian health district 2006-2016[J]. PLoS One, 2019, 14(4): e0214298.
[11] Kim SJ, Kim GE, Park JH, et al. Clinical features and prognostic factors of early-onset sepsis: a 7.5-year experience in one neonatal intensive care unit[J]. Korean J Pediatr, 2019, 62(1): 36-41.
[12] Russell NJ, Seale AC, O'Sullivan C, et al. Risk of early-onset neonatal group B Streptococcal disease with maternal colonization worldwide: systematic review and meta-analyses[J]. Clin Infect Dis, 2017, 65(suppl_2): s152-s159.
[13] Queensland Clinical Guidelines. Early onset group B Streptococcal disease. Guideline No. MN22.20-V6-R27.Queensland Health, 2022, [2021-12-24] http://www.health.qld.gov.au/qcg
[14] Zhou P, Zhou Y, Liu B, et al. Perinatal antibiotic exposure affects the transmission between maternal and neonatal microbiota and is associated with early-onset sepsis[J]. mSphere, 2020, 5(1).
[15] Cools P, van de Wijgert J, Jespers V, et al. Role of HIV exposure and infection in relation to neonatal GBS disease and rectovaginal GBS carriage: a systematic review and meta-analysis[J]. Sci Rep, 2017, 7(1): 13820.
[16] Shane AL, Sánchez PJ, Stoll BJ. Neonatal sepsis[J]. Lancet, 2017, 390(10104): 1770-1780.
[17] Li X, Ding X, Shi P, et al. Clinical features and antimicrobial susceptibility profiles of culture-proven neonatal sepsis in a tertiary children's hospital, 2013 to 2017[J]. Medicine (Baltimore), 2019, 98(12): e14686.
[18] Sonar SA, Lal G. Blood-brain barrier and its function during inflammation and autoimmunity[J]. J Leukoc Biol, 2018, 103(5): 839-853.
[19] Kohli-Lynch M, Russell NJ, Seale AC, et al. Neuro-developmental impairment in children after group B Streptococcal disease worldwide: systematic review and meta-analyses[J]. Clin Infect Dis, 2017, 65(suppl_2): S190-s199.
[20] Rosa-Fraile M, Spellerberg B. Reliable detection of group B Streptococcus in the clinical laboratory[J]. J Clin Microbiol, 2017, 55(9): 2590-2598.
[21] Guo D, Xi Y, Wang S, et al. Is a positive Christie-Atkinson-Munch-Peterson (CAMP) test sensitive enough for the identification of Streptococcus agalactiae?[J]. BMC Infect Dis, 2019, 19(1): 7.
[22] Dalai R, Dutta S, Pal A, et al. Is lumbar puncture avoidable in low-risk neonates with suspected sepsis?[J]. Am J Perinatol, 2022, 39(1): 99-105.
[23] Pammi M, Flores A, Versalovic J, et al. Molecular assays for the diagnosis of sepsis in neonates[J]. Cochrane Database Syst Rev, 2017, 2(2): Cd011926.
[24] Oeser C, Pond M, Butcher P, et al. PCR for the detection of pathogens in neonatal early onset sepsis[J]. PLoS One, 2020, 15(1): e0226817.
[25] Han MY, Xie C, Huang QQ, et al. Evaluation of Xpert GBS assay and Xpert GBS LB assay for detection of streptococcus agalactiae[J]. Ann Clin Microbiol Antimicrob, 2021, 20(1): 62.
[26] El Shahaway AA, El Maghraby HM, Mohammed HA, et al. Diagnostic performance of direct latex agglutination, post-enrichment latex agglutination and culture methods in screening of group B Streptococci in late pregnancy: a comparative study[J]. Infect Drug Resist, 2019, 12: 2583-2588.
[27] Hincu MA, Zonda GI, Stanciu GD, et al. Relevance of biomarkers currently in use or research for practical diagnosis approach of neonatal early-onset sepsis[J]. Children (Basel), 2020, 7(12).
[28] Aydin M, Barut S, Akbulut HH, et al. Application of flow cytometry in the early diagnosis of neonatal sepsis[J]. Ann Clin Lab Sci, 2017, 47(2): 184-190.
[29] Nakstad B, Sonerud T, Solevag AL. Early detection of neonatal group B Streptococcus sepsis and the possible diagnostic utility of IL-6, IL-8, and CD11b in a human umbilical cord blood in vitro model[J]. Infect Drug Resist, 2016, 9: 171-179.
[30] Hoover LE. Group B Streptococcus disease: AAP Updates Guidelines for the management of at-risk infants[J]. Am Fam Physician, 2020, 101(6): 378-380.
[31] Metcalf BJ, Chochua S, Gertz RE, et al. Short-read whole genome sequencing for determination of antimicrobial resistance mechanisms and capsular serotypes of current invasive Streptococcus agalactiae recovered in the USA[J]. Clin Microbiol Infect, 2017, 23(8): 574. e577-574.e514.
[32] Plainvert C, Hays C, Touak G, et al. Multidrug-resistant hypervirulent group B Streptococcus in neonatal invasive infections, France, 2007-2019 [J]. Emerg Infect Dis, 2020, 26(11): 2721-2724.
[33] Campisi E, Rosini R, Ji W, et al. Genomic analysis reveals multi-drug resistance clusters in group B Streptococcus CC17 hypervirulent isolates causing neonatal invasive disease in Southern Mainland China[J]. Front Microbiol, 2016, 7: 1265.
[34] Martins ER, Pedroso-Roussado C, Melo-Cristino J, et al. Streptococcus agalactiae causing neonatal infections in Portugal (2005-2015): diversification and emergence of a CC17/PI-2b multidrug resistant sublineage [J]. Front Microbiol, 2017, 8: 499.
[35] Lund SJ, Patras KA, Kimmey JM, et al. Developmental immaturity of siglec receptor expression on neonatal alveolar macrophages predisposes to severe group B Streptococcal infection[J]. iScience, 2020, 23(6): 101207.
[36] Hansen R, Gibson S, De Paiva Alves E, et al. Adaptive response of neonatal sepsis-derived Group B Streptococcus to bilirubin[J]. Sci Rep, 2018, 8(1): 6470.
[37] 吴晓彬, 余加林, 李雪梅. 岩藻糖基化人乳低聚糖在新生儿无乳链球菌肺炎治疗中的作用[J]. 中国微生态学杂志, 2020, 32(3): 264-268.
[38] Schüller SS, Kramer BW, Villamor E, et al. Immunomodulation to prevent or treat neonatal sepsis: past, present, and future[J]. Front Pediatr, 2018, 6: 199.
[39] Ohlsson A, Lacy JB. Intravenous immunoglobulin for suspected or proven infection in neonates[J]. Cochrane Database Syst Rev, 2020, 1(1): Cd001239.
[40] Lee J, Naiduvaje K, Chew KL, et al. Preventing early-onset group B Streptococcal sepsis: clinical risk factor-based screening or culture-based screening?[J]. Singapore Med J, 2021, 62(1): 34-38.
[41] 中华医学会围产医学分会,中华医学会妇产科学分会产科学组. 预防围产期B族链球菌病(中国)专家共识[J]. 中华围产医学杂志, 2021, 24(8): 561-566.
[42] Vekemans J, Moorthy V, Friede M, et al. Maternal immunization against group B Streptococcus: World Health Organization research and development technological roadmap and preferred product characteristics[J]. Vaccine, 2019, 37(50): 7391-7393.
[43] Madhi SA, Koen A, Cutland CL, et al. Antibody kinetics and response to routine vaccinations in infants born to women who received an investigational trivalent group B Streptococcus polysaccharide CRM197-conjugate vaccine during pregnancy[J]. Clin Infect Dis, 2017, 65(11): 1897-1904.
[44] Absalon J, Segall N, Block SL, et al. Safety and immunogenicity of a novel hexavalent group B Strep-tococcus conjugate vaccine in healthy, non-pregnant adults: a phase 1/2, randomised, placebo-controlled, observer-blinded, dose-escalation trial[J]. Lancet Infect Dis, 2021, 21(2): 263-274.
[45] Lin SM, Jang AY, Zhi Y, et al. Vaccination with a latch peptide provides serotype-independent protection against group B Streptococcus infection in mice[J]. J Infect Dis, 2017, 217(1): 93-102.
文章导航

/