儿童肾小管疾病诊治现状及早期识别
收稿日期: 2020-12-25
网络出版日期: 2022-12-06
基金资助
国家自然科学基金面上项目(82170683);上海市自然科学基金面上项目(19ZR1442300)
The current management and early diagnosis of renal tubular diseases in children
Received date: 2020-12-25
Online published: 2022-12-06
肾小管疾病是由各种原发和/或继发因素导致肾小管结构、功能及细胞代谢异常的一类疾病。目前尚无公认的肾小管疾病归类方法,作者根据疾病的病程、病因、累及部位、物质转运障碍类型以及人类基因组组织的统一命名进行初步分类。统一规范的分类有助于肾小管疾病的临床诊治。由于儿童肾小管疾病临床表现多样化,缺乏特异性症状,疾病呈现缓慢进展状态,实验室检测手段有限,迄今对该类疾病认识不足,在临床上易误诊误治,因此早期识别至关重要。肾小管疾病早期诊断依赖于病史的详细询问、临床症状与体征的细致观察、实验室和影像学及基因的精准检查等。多学科合作诊治有利于改善肾小管疾病的预后。
黄文彦 , 康郁林 . 儿童肾小管疾病诊治现状及早期识别[J]. 临床儿科杂志, 2022 , 40(12) : 881 -885 . DOI: 10.12372/jcp.2022.22e1435
Renal tubule disease is a kind of disease caused by various primary and/or secondary factors, which leads to abnormal structure, function and cell metabolism of the renal tubule. To date, there is no consensus on the classification of renal tubular diseases. We preliminarily classify renal tubular diseases according to their course, causes, involved sites, types of substance transport disorder, and the unified name of human genome organization. A unified and standardized classification is helpful for clinical diagnosis and treatment of renal tubular diseases. Due to the diversity of its clinical manifestations in children, the lack of specific symptoms, the slow progress of the disease, and the limited laboratory diagnostic methods, the lack of understanding of such diseases, misdiagnosis and mistreatment occur frequently in clinic. Thus, early recognition of renal tubular diseases is crucial. The early diagnosis of renal tubular diseases depends on the detailed inquiry of medical history, careful observation of clinical symptoms and signs, and the data of relevant laboratory, imaging examinations and genetic analysis. In addition, multidisciplinary cooperation is valuable to improve the prognosis of renal tubular diseases.
Key words: tubular disease; diagnosis and treatment; genetic testing; child
[1] | Stamellou E, Leuchtle K, Moeller MJ. Regenerating tubular epithelial cells of the kidney[J]. Nephrol Dial Transplant, 2021, 36(11): 1968-1975. |
[2] | Li Z, Liu Z, Luo M, et al. The pathological role of damaged organelles in renal tubular epithelial cells in the progression of acute kidney injury[J]. Cell Death Discov, 2022, 8(1): 239. |
[3] | Guo W, Ji P, Xie Y. Genetic diagnosis and treatment of hereditary renal tubular disease with hypokalemia and alkalosis[J]. J Nephrol, 2022. doi: 10.1007/s40620-022-01428-4. |
[4] | Foreman JW. Fanconi syndrome[J]. Pediatr Clin North Am, 2019, 66(1): 159-167. |
[5] | Mrad FCC, Soares SBM, et al. Bartter's syndrome: clinical findings, genetic causes and therapeutic approach[J]. World J Pediatr, 2021, 17(1): 31-39. |
[6] | Fulchiero R, Seo-Mayer P. Bartter syndrome and Gitelman syndrome[J]. Pediatr Clin North Am, 2019, 66(1): 121-134. |
[7] | Bazúa-Valenti S, Casta?eda-Bueno M, Gamba G. Physiological role of SLC12 family members in the kidney[J]. Am J Physiol Renal Physiol, 2016, 311(1): F131-F144. |
[8] | 姚浙锋, 黄文彦. SLC12家族相关性肾小管疾病研究进展[J]. 国际儿科学杂志, 2022, 49(1): 29-33. |
[9] | Desanti De Oliveira B, Xu K, Shen TH, et al. Molecular nephrology: types of acute tubular injury[J]. Nat Rev Nephrol, 2019, 15(10): 599-612. |
[10] | Perazella MA, Rosner MH. Drug-induced acute kidney injury[J]. Clin J Am Soc Nephrol, 2022, 17(8): 1220-1233. |
[11] | Wang X, Yu M, Wang T, et al. Genetic analysis and literature review of Chinses patients with familial renal glucosuria: identification of a novel SLC5A2 mutation[J]. Clin Chim Acta, 2017, 469: 105-110. |
[12] | Br?er S. Amino acid transporters as disease modifiers and drug targets[J]. SLAS Discov, 2018, 23(4): 303-320. |
[13] | Alexander RT, Bitzan M. Renal tubular acidosis[J]. Pediatr Clin North Am, 2019, 66(1): 135-157. |
[14] | Li S, Yang Y, Huang L, et al. A novel compound heter-ozygous mutation in SLC5A2 contributes to familial renal glucosuria in a Chinese family, and a review of the relevant literature[J]. Mol Med Rep, 2019, 19(5): 4364-4376. |
[15] | Banjarnahor S, Rodionov RN, K?nig J, et al. Transport of L-arginine related cardiovascular risk markers[J]. J Clin Med, 2020, 9(12): 3975. |
[16] | Pereira DJ, Schoolwerth AC, Pais VM. Cystinuria: current concepts and future directions[J]. Clin Nephrol, 2015, 83(3): 138-146. |
[17] | Jin YY, Huang LM, Quan XF, et al. Dent disease: classification, heterogeneity and diagnosis[J]. World J Pediatr, 2021, 17(1): 52-57. |
[18] | Mehta ZB, Pietka G, Lowe M. The cellular and physiological functions of the Lowe syndrome protein OCRL1[J]. Traffic, 2014, 15(5): 471-487. |
[19] | Vargas-Poussou R. Pathophysiological aspects of the thick ascending limb and novel genetic defects: HELIX syndrome and transient antenatal Bartter syndrome[J]. Pediatr Nephrol, 2022, 37(2): 239-252. |
[20] | Lo J, Forst AL, Warth R, et al. EAST/SeSAME syndrome and beyond: the spectrum of Kir4.1- and Kir5.1-associated channelopathies[J]. Front Physiol, 2022, 13: 852674. |
[21] | Giglio S, Montini G, Trepiccione F, et al. Distal renal tubular acidosis: a systematic approach from diagnosis to treatment[J]. J Nephrol, 2021, 34(6): 2073-2083. |
[22] | 张丽宁, 匡新宇, 孙蕾, 等. 儿童原发性远端肾小管酸中毒21例临床和基因分析[J]. 临床儿科杂志, 2021, 39(12): 900-904. |
[23] | Tetti M, Monticone S, Burrello J, et al. Liddle syndrome: review of the literature and description of a new case[J]. Int J Mol Sci, 2018, 19(3): E812. |
[24] | Furgeson SB, Linas S. Mechanisms of type I and type II pseudohypoaldosteronism[J]. J Am Soc Nephrol, 2010, 21(11): 1842-1845. |
[25] | Joshi S, Kvistgaard H, Kamperis K, et al. Novel and recurrent variants in AVPR2 in 19 families with X-linked congenital nephrogenic diabetes insipidus[J]. Eur J Pediatrics, 2018, 177(9): 1399-1405. |
/
〈 |
|
〉 |