遗传代谢病检测技术及应用选择
收稿日期: 2022-10-31
网络出版日期: 2023-02-16
基金资助
上海市卫健委科研项目(202140346);国家重点研发计划(2016YFC0901505)
Detection technology and application selection of genetic metabolic diseases
Received date: 2022-10-31
Online published: 2023-02-16
韩连书 . 遗传代谢病检测技术及应用选择[J]. 临床儿科杂志, 2023 , 41(2) : 81 -85 . DOI: 10.12372/jcp.2023.22e1461
Inherited metabolic diseases among rare diseases, also known as inborn errors of metabolism, refer to the enzymes, receptors, and cell membrane dysfunctions involved in and caused by genetic defects. These diseases lead to the blockage of metabolic pathways, and an accumulation of intermediate, bypass products, or a lack of terminal products, resulting in a variety of clinical symptoms. In recent years, the advances in detection techniques have enabled a larger number of patients to be diagnosed and treated timelier, shortening the time from disease onset to treatment and improving the quality of outcomes. This article focuses on fluorescence immunoassay techniques, tandem mass spectrometry, gas chromatography-mass spectrometry, gene sequencing, chromosome detection techniques and options of techniques above for inherited metabolic diseases to improve clinicians' understanding.
[1] | Ferreira CR, van Karnebeek CDM. Inborn errors of metabolism[J]. Handb Clin Neurol, 2019, 162: 449-481. |
[2] | 张偲, 梁雁, 罗小平. 遗传代谢病的实验室检查思路[J]. 中华儿科杂志, 2021, 59(6): 534-536. |
[3] | Ferreira CR, Vockley J, et al. A proposed nosology of inborn errors of metabolism[J]. Genet Med, 2019, 21(1): 102-106. |
[4] | Spacil Z, Tatipaka H, Barcenas M, et al. High-throughput assay of 9 lysosomal enzymes for newborn screening[J]. Clin Chem, 2013, 59(3): 502-511. |
[5] | Millington DS, Kodo N, Norwood DL, et al. Tandem mass spectrometry: a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism[J]. J Inherit Metab Dis, 1990, 13(3): 321-324. |
[6] | Ozben T. Expanded newborn screening and confirmatory follow-up testing for inborn errors of metabolism detected by tandem mass spectrometry[J]. Clin Chem Lab Med, 2013, 51(1): 157-176. |
[7] | 马飞, 石聪聪, 梁普平, 等. 利用CRISPR/Cas9构建甲基丙二酸血症cblC型W203X突变小鼠模型[J]. 中国当代儿科杂志, 2019, 21(8): 824-829. |
[8] | 田国力, 王燕敏, 许洪平, 等. 非衍生化串联质谱技术筛查上海部分地区新生儿遗传代谢病的回顾性分析[J]. 临床检验杂志, 2016, 34(12): 909-912. |
[9] | Speiser PW, Arlt W, Auchus RJ, et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an endocrine society clinical practice guideline[J]. J Clin Endocrinol Metab, 2018, 103(11): 4043-4088. |
[10] | Gelb MH, Lukacs Z, Ranieri E, et al. Newborn screening for lysosomal storage disorders: methodologies for measurement of enzymatic activities in dried blood spots[J]. Int J Neonatal Screen, 2019, 5(1): 1. |
[11] | 王燕敏, 田国力, 纪伟. 串联质谱技术在X-连锁肾上腺脑白质营养不良病筛查中的应用价值[J]. 检验医学, 2019, 34(12): 1059-1065. |
[12] | 新生儿疾病串联质谱筛查技术专家共识[J]. 中华检验医学杂志, 2019, (2): 89-97. |
[13] | 韩连书. 质谱技术在遗传代谢病及产前诊断中的应用[J]. 中华检验医学杂志, 2017, 40(10): 761-765. |
[14] | Taylor AE, Keevil B, Huhtaniemi IT. Mass spectrometry and immunoassay: how to measure steroid hormones today and tomorrow[J]. Eur J Endocrinol, 2015, 173(2): D1-12. |
[15] | Ambroziak U, K?pczyńska-Nyk A, Kury?owicz A, et al. The diagnosis of nonclassic congenital adrenal hyperplasia due to 21-hydroxylase deficiency, based on serum basal or post-ACTH stimulation 17-hydroxyprogesterone, can lead to false-positive diagnosis[J]. Clin Endocrinol (Oxf), 2016, 84(1): 23-29. |
[16] | Speiser PW, Azziz R, Baskin LS, et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline[J]. J Clin Endocrinol Metab, 2010, 95(9): 4133-4160. |
[17] | Palmieri S, Morelli V, Polledri E, et al. The role of salivary cortisol measured by liquid chromatography-tandem mass spectrometry in the diagnosis of subclinical hypercortisolism[J]. Eur J Endocrinol, 2013, 168(3): 289-296. |
[18] | 沈敏, 杨晓东, 王琳, 等. 血清总同型半胱氨酸候选参考测量程序(液相色谱串联质谱法)的建立及性能评估[J]. 检验医学, 2018, 33(11): 1018-1025. |
[19] | Li Y, Scott CR, Chamoles NA, et al. Direct multiplex assay of lysosomal enzymes in dried blood spots for newborn screening[J]. Clin Chem, 2004, 50(10): 1785-1796. |
[20] | Marsden D, Levy H. Newborn screening of lysosomal storage disorders[J]. Clin Chem, 2010, 56(7): 1071-1079. |
[21] | Millington DS, Bali DS. Current state of the art of newborn screening for lysosomal storage disorders[J]. Int J Neonatal Screen, 2018, 4(3): 24. |
[22] | 何玺玉. X-连锁肾上腺脑白质营养不良的诊断与治疗[J]. 中华实用儿科临床杂志, 2015, (8): 561-564. |
[23] | Huffnagel IC, van de Beek MC, Showers AL, et al. Comparison of C26:0-carnitine and C26:0-lysophos-phatidylcholine as diagnostic markers in dried blood spots from newborns and patients with adrenoleukodystrophy[J]. Mol Genet Metab, 2017, 122(4): 209-215. |
[24] | 罗小平, 王慕逖, 魏虹, 等. 尿滤纸片法气相色谱-质谱分析技术在遗传性代谢病高危筛查诊断中的应用[J]. 中华儿科杂志, 2003, (4): 9-12,84. |
[25] | Tanaka K, Budd MA, Efron ML, et al. Isovaleric acidemia: a new genetic defect of leucine metabolism[J]. Proc Natl Acad Sci U S A, 1966, 56(1): 236-242. |
[26] | 卜欣欣, 邱文娟, 张惠文, 等. 气相-色谱质谱法尿有机酸检测诊断遗传代谢病患儿的疾病谱[J]. 中华儿科杂志, 2022, 60(6): 522-526. |
[27] | Rufini S, Ghebregzabher M, Castellucci G, et al. A new screening test for the diagnosis of mucopolysaccharidoses[J]. Clin Chim Acta, 1979, 95(3): 443-446. |
[28] | 胡琦, 欧明才, 张钰, 等. 32例高苯丙氨酸血症鉴别诊断分析[J]. 实用医院临床杂志, 2014, 11(1): 73-75. |
[29] | Petersen BS, Fredrich B, Hoeppner MP, et al. Opportunities and challenges of whole-genome and -exome sequencing[J]. BMC Genet, 2017, 18(1): 14. |
[30] | 张晓青, 王丽丽, 余永国, 等. 脊髓性肌萎缩症的三种基因诊断方法比较[J]. 中华检验医学杂志, 2015, (1): 16-20. |
[31] | Azad AK, Huang CK, Jin H, et al. Enhanced carrier screening for spinal muscular atrophy: detection of silent (SMN1: 2 + 0) carriers utilizing a novel TaqMan genotyping method[J]. Lab Med, 2020, 51(4): 408-415. |
[32] | 周学军, 欧阳小梅, 刘学忠. 常见遗传性聋致病基因研究进展及基因诊断的临床应用[J]. 听力学及言语疾病杂志, 2011, 19(1): 73-77. |
/
〈 |
|
〉 |