儿童新型冠状病毒感染神经系统并发症诊治专家共识
上海医学会儿科分会神经学组 . 儿童新型冠状病毒感染神经系统并发症诊治专家共识[J]. 临床儿科杂志, 2023 , 41(4) : 300 -310 . DOI: 10.12372/jcp.2023.23e0038
[1] | Chi H, Chang L, Chao YC, et al. Pathogenesis and preventive tactics of immune-mediated non-pulmonary COVID-19 in children and beyond[J]. Int J Mol Sci, 2022, 23(22): 14157. |
[2] | Urso L, Distefano MG, Cambula G, et al. The case of encephalitis in a COVID-19 pediatric patient[J]. Neurol Sci, 2022, 43(1): 105-112. |
[3] | Siracusa L, Cascio A, Giordano S, et al. Neurological complications in pediatric patients with SARS-CoV-2 infection: a systematic review of the literature[J]. Italian J Pediatr. 2021, 47(1): 123 |
[4] | Hilado M, Banh M, Homans J, et al. Pediatric autoimmune encephalitis following COVID-19 infection[J]. J Child Neurol, 2022, 37(4): 268-272. |
[5] | Kim Y, Walser SA, Asghar SJ, et al. A comprehensive review of neurologic manifestations of COVID-19 and management of pre-existing neurologic disorders in children[J]. J Child Neurol, 2021, 36(4): 324-330. |
[6] | Valderas C, Méndez G, Echeverría A, et al. COVID-19 and neurologic manifestations: a synthesis from the child neurologist’s corner[J]. World J Pediatr, 2022, 18(6): 373-382. |
[7] | Ray STJ, Abdel-Mannan O, Sa M, et al. Neurological manifestations of SARS-CoV-2 infection in hospitalised children and adolescents in the UK: a prospective national cohort study[J]. Lancet Child Adolesc Health, 2021, 5(9): 631-641. |
[8] | Tso WWY, Kwan MYW, Wang YL, et al. Severity of SARS-CoV-2 Omicron BA.2 infection in unvaccinated hospitalized children: comparison to influenza and parainfluenza infections[J]. Emerg Microbes Infect, 2022, 11(1): 1742-1750. |
[9] | LaRovere KL, Riggs BJ, Poussaint TY, et al. Neurologic involvement in children and adolescents hospitalized in the United States for COVID-19 or multisystem inflammatory syndrome[J]. JAMA Neurol, 2021, 78(5): 536-547. |
[10] | Dang D, Wang L, Zhang C, et al. Potential effects of SARS-CoV-2 infection during pregnancy on fetuses and newborns are worthy of attention[J]. J Obstet Gynaecol Res, 2020, 46(10): 1951-1957. |
[11] | Baig AM, Khaleeq A, Ali U, et al. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms[J]. ACS Chem Neurosci, 2020, 11(7): 995-998. |
[12] | Zhang H, Penninger JM, Li Y, et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target[J]. Intensive Care Med, 2020, 46(4): 586-590. |
[13] | Chen R, Wang K, Yu J, et al. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in human and mouse brains[J]. Front Neurol, 2021, 11: 573095. |
[14] | Bhaskar S, Sinha A, Banach M, et al. Cytokine storm in COVID-19-immunopathological mechanisms, clinical considerations, and therapeutic approaches: the REPROGRAM Consortium Position Paper[J]. Front Immunol, 2020, 11: 1648. |
[15] | Schober ME, Pavia AT, Bohnsack JF, et al. Neurologic manifestations of COVID-19 in children: emerging pathophysiologic insights[J]. Pediatr Crit Care Med, 2021, 22(7): 655-661. |
[16] | Stafstrom CE, Jantzie LL. COVID-19: neurological considerations in neonates and children[J]. Children (Basel), 2020, 7(9): 133. |
[17] | Nordvig AS, Fong KT, Willey JZ, et al. Potential neurologic manifestations of COVID-19[J]. Neurol Clin Pract, 2021, 11(2): e135-e146. |
[18] | Maury A, Lyoubi A, Peifer-Smadja N, et al. Neurological manifestations associated with SARS-CoV-2 and other coronaviruses: a narrative review for clinicians[J]. Rev Neurol (Paris), 2021, 177(1-2): 51-64. |
[19] | Franke C, Ferse C, Kreye J, et al. High frequency of cerebrospinal fuid autoantibodies in COVID-19 patients with neurological symptoms[J]. Brain Behav Immun, 2021, 93: 415-419. |
[20] | Vasilevska V, Guest PC, Bernstein HG, et al. Molecular mimicry of NMDA receptors may contribute to neuropsychiatric symptoms in severe COVID-9 cases[J]. J Neuroinflammation, 2021, 18(1): 245. |
[21] | Smadja DM, Mentzer SJ, Fontenay M, et al. COVID-19 is a systemic vascular hemopathy: insight for mechanistic and clinical aspects[J]. Angiogenesis, 2021, 24(4): 755-788. |
[22] | Lin JE, Asfour A, Sewell TB, et al. Neurological issues in children with COVID-19[J]. Neurosci Lett, 2021, 743: 135567. |
[23] | Boronat S. Neurologic care of COVID-19 in children[J]. Front Neurol, 2021, 11: 613832. |
[24] | Kanberg N, Ashton NJ, Andersson LM, et al. Neuro-chemical evidence of astrocytic and neuronal injury commonly found in COVID-19[J]. Neurology, 2020, 95(12): e1754-e1759. |
[25] | Hennon TR, Penque MD, Abdul-Aziz R, et al. COVID-19 associated multisystem infammatory syndrome in children (MIS-C) guidelines: a Western New York approach[J]. Prog Pediatr Cardiol, 2020, 23: 101232. |
[26] | Solomon IH, Normandin E, Bhattacharyya S, et al. Neuropathological features of Covid-19[J]. N Engl J Med, 2020, 383(10): 989-992. |
[27] | Thakur KT, Miller EH, Glendinning MD, et al. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital[J]. Brain, 2021, 144(9): 2696-2708. |
[28] | Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2[J]. Int J Infect Dis, 2020, 94: 55-58. |
[29] | Panda PK, Sharawat IK, Panda P, et al. Neurological complications of SARS-CoV-2 infection in children: a systematic review and meta-analysis[J]. J Trop Pediatr, 2021, 67 (3): fmaa070. |
[30] | Sandoval F, Julio K, Méndez G, et al. Neurologic features associated with SARS-CoV-2 infection in children: a case series report[J]. J Child Neurol, 2021, 36(10): 853-866. |
[31] | Saini L, Krishna D, Tiwari S, et al. Post-COVID-19 immune-mediated neurological complications in children: an ambispective study[J]. Pediatr Neurol, 2022, 136: 20-27. |
[32] | Scheuermeier M, Chaves KQ, Marín-Sanabria D, et al. First pediatric case of autoimmune encephalitis associated with COVID-19 in Costa Rica[J]. Cureus, 2022, 14(10): e30616. |
[33] | Cho SM, White N, Premraj L, et al. Neurological manifestations of COVID-19 in adults and children[J]. Brain, 2022: awac332. |
[34] | Lindan CE, Mankad K, Ram D, et al. Neuroimaging manifestations in children with SARS-CoV-2 infection: a multinational, multicentre collaborative study[J]. Lancet Child Adolesc Heal, 2021, 5: 167-177. |
[35] | Kurd M, Hashavya S, Benenson S, et al. Seizures as the main presenting manifestation of acute SARS-CoV-2 infection in children[J]. Seizure, 2021, 92: 89-93. |
[36] | Lewis A, Frontera J, Placantonakis DG, et al. Cerebrospinal fuid in COVID-19: a systematic review of the literature[J]. J Neurol Sci, 2021, 421: 117316. |
[37] | Abdel-Mannan O, Eyre M, L?bel U, et al. Neurologic and radiographic fndings associated with COVID-19 infection in children[J]. JAMA Neurol, 2020, 77(11): 1440-1445. |
[38] | Kabeerdoss J, Pilania RK, Karkhele R, et al. Severe COVID-19, multisystem infammatory syndrome in children, and Kawasaki disease: immunological mechanisms, clinical manifestations and management[J]. Rheumatol Int, 2021, 41(1): 19-32. |
[39] | Riphagen S, Gomez X, Gonzalez-Martinez C, et al. Hyperinflammatory shock in children during COVID-19 pandemic[J]. Lancet, 2020, 395(10237): 1607-1608. |
[40] | Henderson LA, Canna SW, Friedman KG, et al. American College of Rheumatology Clinical Guidance for Multisystem Inflammatory Syndrome in Children Associated With SARS-CoV-2 and Hyperinflammation in Pediatric COVID-19: version 2[J]. Arthritis Rheumatol, 2021, 73(4): e13-e29. |
[41] | Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study[J]. Lancet, 2020, 395(10239): 1771-1778. |
[42] | Toubiana J, Poirault C, Corsia A, et al. Kawasaki-like multisystem inflammatory syndrome in children during the COVID-19 pandemic in Paris, France: prospective observational study[J]. BMJ, 2020, 369: m2094. |
[43] | Cheung EW, Zachariah P, Gorelik M, et al. Multisystem inflammatory syndrome related to COVID-19 in previously healthy children and adolescents in New York City[J]. JAMA, 2020, 324(3): 294-296. |
[44] | Chiotos K, Bassiri H, Behrens EM, et al. Multisystem inflammatory syndrome in children during the coronavirus 2019 pandemic: a case series[J]. J Pediatr Infect Dis Soc, 2020, 9(3): 393-398. |
[45] | Toraih EA, Hussein MH, Elshazli RM, et al. Multisystem infammatory syndrome in pediatric COVID-19 patients: a meta analysis[J]. World J Pediatr, 2021, 17(2): 141-151. |
[46] | Whittaker E, Bamford A, Kenny J, et al. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2[J]. JAMA, 2020, 324(3): 259-269. |
[47] | Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem inflammatory syndrome in US children and adolescents[J]. N Engl J Med, 2020, 383(4): 334-346. |
[48] | Dufort EM, Koumans EH, Chow EJ, et al. Multisystem inflammatory syndrome in children in New York State[J]. N Engl J Med, 2020, 383(4): 347-358. |
[49] | Wang PY, Yang MT, Liang JS. Acute necrotizing encephalopathy caused by SARS-CoV-2 in a child[J]. Pediatr Neonatol, 2022, 63(6): 642-644. |
[50] | Ho JHY, Lee CYM, Chiong YK, et al. SARS-CoV-2-related acute necrotizing encephalopathy of childhood with good response to tocilizumab in an adolescent[J]. Pediatr Neurol, 2023, 139: 65-69. |
[51] | Jiang J, Wang YE, Palazzo AF, et al. Roles of nucleoporin ranBP2/Nup358 in acute necrotizing encephalopathy type 1 (ANE1) and viral infection[J]. Int J Mol Sci, 2022, 23(7), 3548. |
[52] | Lazarte-Rantes C, Guevara-Casta?ón J, Romero L, et al. Acute necrotizing encephalopathy associated with SARS-CoV-2 exposure in a pediatric patient[J]. Cureus, 2021, 13(5): e15018. |
[53] | Al-Anezi A, Sotirova-Koulli V, Shalaby O, et al. Biotin-thiamine responsive basal ganglia disease in the era of COVID-19 outbreak diagnosis not to be missed: a case report[J]. Brain Dev, 2022, 44(4): 303-307. |
[54] | Mizuguchi M, Yamanouchi H, Ichiyama T, et al. Acute encephalopathy associated with influenza and other viral infections[J]. Acta Neurol Scand Suppl, 2007, 186: 45-56. |
[55] | Hoshino A, Saitoh M, Miyagawa T, et al. Specific HLA genotypes confer susceptibility to acute necrotizing encephalopathy[J]. Genes Immun, 2016, 17(6), 367-369. |
[56] | Poyiadji N, Shahin G, Noujaim D, et al. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: imaging features[J]. Radiology, 2020, 296(2): E119-E120. |
[57] | Haqiqi A, Samuels TL, Lamb FJ, et al. Acute haemorrhagic leukoencephalitis (Hurst disease) in severe COVID- 19 infection[J]. Brain Behav Immun Health, 2021, 12: 100208. |
[58] | Zelada-Ríos L, Pacheco-Barrios K, Galecio-Castillo M, et al. Acute disseminated encephalomyelitis and COVID-19: a systematic synthesis of worldwide cases[J]. J Neuroimmunol, 2021, 359: 577674. |
[59] | Wang Y, Wang Y, Huo L, et al. SARS CoV 2 associated acute disseminated encephalomyelitis: a systematic review of the literature[J]. J Neurol, 2022, 269(3): 1071-1092. |
[60] | Zhao H, Shen D, Zhou H, et al. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence?[J]. Lancet Neurol, 2020, 19(5): 383-384. |
[61] | Palaiodimou L, Stefanou MI, Katsanos AH, et al. Prevalence, clinical characteristics and outcomes of Guillain-Barré syndrome spectrum associated with COVID-19: a systematic review and meta-analysis[J]. Eur J Neurol, 2021, 28(10): 3517-3529. |
[62] | Stowe J, Andrews N, Wise L, et al. Investigation of the temporal association of Guillain-Barré syndrome with infuenza vaccine and infuenzalike illness using the United Kingdom General Practice Research Database[J]. Am J Epidemiol, 2009, 169(3): 382-388. |
[63] | Mier-Y-Teran-Romero L, Delorey MJ, Sejvar JJ, et al. Guillain-Barré syndrome risk among individuals infected with Zika virus: a multi-country assessment[J]. BMC Med, 2018, 16(1): 67. |
[64] | Dos Santos PK, Sigoli E, Bragan?a LJG, et al. The musculoskeletal involvement after mild to moderate COVID-19 infection[J]. Front Physiol, 2022, 13: 813924. |
[65] | Hannah JR, Ali SS, Nagra D, et al. Skeletal muscles and COVID-19: a systematic review of rhabdomyolysis and myositis in SARS-CoV-2 infection[J]. Clin Exp Rheumatol, 2022, 40(2): 329-338. |
[66] | Wu PS, Wong SB, Cheng CF, et al. Rhabdomyolysis in pediatric patients with SARS-CoV-2 infection[J]. Children (Basel), 2022, 9(10): 1441. |
[67] | Saud A, Naveen R, Aggarwal R, et al. COVID-19 and myositis: what we know so far[J]. Curr Rheumatol Rep, 2021, 23(8): 63. |
[68] | Singh B, Kaur P, Mechineni A, et al. Rhabdomyolysis in COVID-19: report of four cases[J]. Cureus, 2020, 12(9): e10686. |
[69] | Suh J, Amato AA. Neuromuscular complications of coronavirus disease-19[J]. Curr Opin Neurol, 2021, 34(5): 669-674. |
[70] | Bagnato S, Boccagni C, Marino G, et al. Critical illness myopathy after COVID-19[J]. Int J Infect Dis, 2020, 99: 276-278. |
[71] | Kayim Yildiz O, Yildiz B, Avci O, et al. Clinical, neurophysiological and neuroimaging fndings of critical illness myopathy after COVID-19[J]. Cureus, 2021, 13(3): e13807. |
[72] | Graham EL, Clark JR, Orban ZS, et al. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized COVID-19 “long haulers”[J]. Ann Clin Transl Neurol, 2021, 8(5): 1073-1085. |
[73] | Radtke T, Ulyte A, Puhan MA, et al. Long-term symptoms after SARS-CoV-2 infection in children and adolescents[J]. JAMA, 2021, 326(9): 869-871. |
[74] | Crook H, Raza S, Nowell J, et al. Long covid-mechanisms, risk factors, and management[J]. BMJ, 2021, 374: n1648 |
[75] | Buonsenso D, Munblit D, De Rose C, et al. Preliminary evidence on long COVID in children[J]. Acta Paediatr, 2021, 110(7): 2208-2211. |
[76] | Taquet M, Sillett R, Zhu L, et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1284437 patients[J]. Lancet Psychiatry, 2022, 9(10): 815-827. |
[77] | 国家卫生健康委员会, 国家中医药管理局综合司. 新型冠状病毒肺炎诊疗方案(试行第十版). [EB/OL].[2023-02-07]. http://www.gov.cn/zhengce/zhengceku/2023-01/06/5735343/files/5844ce04246b431dbd322d8ba10afb48.pdf |
[78] | 李兴旺, 杨永弘, 申昆玲, 等. 儿童新型冠状病毒感染诊断、治疗和预防专家共识(第四版)[J]. 中华实用儿科临床杂志, 2022, 37(14): 1053-1065. |
[79] | Zamani R, Pouremamali R, Rezaei N. Central neuroin-flammation in COVID-19: a systematic review of 182 cases with encephalitis, acute disseminated encephalomyelitis, and necrotizing encephalopathies[J]. Rev Neurosci, 2021, 33(4): 397-412. |
[80] | Abdel-Mannan O, Eyre M, L?bel U, et al. Neurologic and radiographic findings associated with COVID-19 infection in children[J]. JAMA Neurol, 2020, 77(11): 1440-1445. |
[81] | Y?lmaz A, Yay?c? K?ken ?, ?ekero?lu B, et al. A near-global slowing of background activity and epileptic discharges in children with mild to moderately symptomatic COVID-19 infection: an electro-neurophysiological study[J]. Clin EEG Neurosci, 2022, 53(6): 532-542. |
[82] | Rastogi S, Gala F, Kulkarni S, et al. Neurological and neuroradiological patterns with COVID-19 infection in children: a single institutional study[J]. Indian J Radiol Imaging, 2022, 32(4): 510-522. |
[83] | Wong AM, Toh CH. Spectrum of neuroimaging mimics in children with COVID-19 infection[J]. Biomed J, 2022, 45(1): 50-62. |
[84] | Fayyazi A, Pezeshki N, Hosseini F, et al. Effectiveness of prophylaxis treatment in the acute febrile stage of febrile seizure in children under five years old[J]. Iran J Child Neurol, 2022, 16(1): 97-104. |
[85] | Rathod R, Kale A, Joshi S. Novel insights into the effect of vitamin B12 and omega-3 fatty acids on brain function[J]. J Biomed Sci, 2016, 23: 17. |
[86] | Baltrusch S. The role of neurotropic b vitamins in nerve regeneration[J]. Biomed Res Int, 2021, 9968228. |
/
〈 |
|
〉 |