专家笔谈

遗传性代谢病中的糖代谢急症

  • 许巍
展开
  • 中国医科大学附属盛京医院(辽宁沈阳 110000)
许巍 博士, ORCID:0000-0003-4454-933X,教授、主任医师 ,博士研究生导师,中国医科大学附属盛京医院教研室副主任 、儿童重症医学科副主任。兼任中华医学会儿科分会青年委员会副主任委员;辽宁省医学会儿科分会候任主任委员;中华医学会儿科分会感染与控制委员会委员;中华医学会医学病毒学分会临床病毒学组委员;中国医师协会儿科分会急救专委会委员;辽宁省医师协会儿科分会委员;中国医学救援协会公共卫生事件专业委员会副主任委员。《中国循证儿科杂志》《临床儿科杂志》《中国小儿急救医学》《临床军医杂志》等杂志编委等。主要从事儿童重症临床工作,儿科学教学和儿童肺疾病临床和基础研究。

收稿日期: 2023-04-04

  网络出版日期: 2023-06-12

Carbohydrate metabolic emergencies in inborn errors of metabolism

  • Wei XU
Expand
  • Shengjing Hospital of China Medical University, Liaoning 110000, Shenyang, China

Received date: 2023-04-04

  Online published: 2023-06-12

摘要

遗传性代谢病中的糖代谢急症主要表现为酮症性低血糖,在碳水化合物摄入不足或未进食的情况下患儿出现嗜睡、脑病甚至猝死,部分患儿伴有肝功能衰竭、运动障碍或者心功能障碍等急症。患儿通过DNA分析和/或对培养的皮肤成纤维细胞、肝、白细胞或红细胞中酶活性的检测得到确诊。积极处理低血糖、代谢性酸中毒,给予必要的呼吸和循环支持治疗、控制感染、肝脏支持治疗以及其他相对特异性治疗或者酶替代疗法是急症救治的关键。

关键词: 糖代谢; 急症; 低血糖; 儿童

本文引用格式

许巍 . 遗传性代谢病中的糖代谢急症[J]. 临床儿科杂志, 2023 , 41(6) : 411 -416 . DOI: 10.12372/jcp.2022.23e0263

Abstract

The main manifestation of carbohydrate metabolic emergencies in inborn errors of metabolism is ketotic hypoglycemia. In the case of insufficient carbohydrate intake or fasting, children may have drowsiness, encephalopathy and even sudden death, and some children are accompanied by liver failure, dyskinesia or cardiac dysfunction. The diagnosis was confirmed by DNA analysis and/or detection of enzyme activity in cultured skin fibroblasts, liver cells, white blood cells, or red blood cells. Management of hypoglycemia and metabolic acidosis, provision of ventilatory and circulatory support, treatment of infection, liver replacement therapy, and other relatively specific treatments or enzyme replacement therapy are the keys to save the life.

参考文献

[1] Saudubray JM, Garcia-Cazorla à. Inborn errors of metabolism overview: pathophysiology, manifestations, evaluation, and management[J]. Pediatr Clin North Am, 2018, 65(2): 179-208.
[2] Rom?o A, Simon PEA, Góes JEC, et al. Initial clinical presentation in cases of inborn errors of metabolism in a reference children's hospital: still a diagnostic challenge[J]. Rev Paul Pediatr, 2017, 35(3): 258-264.
[3] Stone WL, Basit H, Adil A. Glycogen storage disease[M]. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright ? 2023, StatPearls Publishing LLC, 2023.
[4] Lak R, Yazdizadeh B, Davari M, et al. Newborn screening for galactosaemia[J]. Cochrane Database Syst Rev, 2017, 12(12): CD012272.
[5] Succoio M, Sacchettini R, Rossi A, et al. Galactosemia: biochemistry, molecular genetics, newborn screening, and Treatment[J]. Biomolecules, 2022, 12(7): 968.
[6] Oldfors A, DiMauro S. New insights in the field of muscle glycogenoses[J]. Curr Opin Neurol, 2013, 26(5): 544-553.
[7] Charles J, Pollack A, Miller G. Cardiomyopathy[J]. Aust Fam Physician, 2014, 43(5): 253.
[8] Vasilescu C, Ojala TH, Brilhante V, et al. Genetic basis of severe childhood-onset cardiomyopathies[J]. J Am Coll Cardiol, 2018, 72(19): 2324-2338.
[9] Tarnopolsky MA. Metabolic myopathies[J]. Continuum (Minneapolis, Minn), 2022, 28(6): 1752-1777.
[10] Berardo A, DiMauro S, Hirano M. A diagnostic algorithm for metabolic myopathies[J]. Curr Neurol Neurosci Rep, 2010, 10(2): 118-126.
[11] Haller RG, Vissing J. Spontaneous “second wind” and glucose-induced second "second wind" in McArdle disease: oxidative mechanisms[J]. Arch Neurol, 2002, 59(9): 1395-1402.
[12] Haller RG, Vissing J. No spontaneous second wind in muscle phosphofructokinase deficiency[J]. Neurology, 2004, 62(1): 82-86.
[13] Haller RG, Lewis SF. Glucose-induced exertional fatigue in muscle phosphofructokinase deficiency[J]. N Engl J Med, 1991, 324(6): 364-369.
[14] Finsterer J. An update on diagnosis and therapy of metabolic myopathies[J]. Expert Rev Neurother, 2018, 18(12): 933-943.
[15] Lilleker JB, Keh YS, Roncaroli F, et al. Metabolic myopathies: a practical approach[J]. Pract Neurol, 2018, 18(1): 14-26.
[16] Sharma S, Prasad AN. Inborn errors of metabolism and epilepsy: current understanding, diagnosis, and treatment approaches[J]. Int J Mol Sci, 2017, 18(7):1384.
[17] Calvo M, Artuch R, Macià E, et al. Diagnostic approach to inborn errors of metabolism in an emergency unit[J]. Pediatr Emerg Care, 2000, 16(6): 405-408.
[18] Gold NB, Kritzer A, Weiner DL, et al. Emergency laboratory evaluations for patients with inborn errors of metabolism[J]. Pediatr Emerg Care, 2021, 37(12): e1154-e1159.
[19] Lord K, Radcliffe J, Gallagher PR, et al. High risk of diabetes and neurobehavioral deficits in individuals with surgically treated hyperinsulinism[J]. J Clin Endocrinol Metab, 2015, 100(11): 4133-4139.
[20] Winchester B, Bali D, Bodamer OA, et al. Methods for a prompt and reliable laboratory diagnosis of pompe disease: report from an international consensus meeting[J]. Mol Genet Metab, 2008, 93(3): 275-281.
[21] Squires JE, McKiernan PJ, Squires RH. Acute liver dysfunction criteria in critically ill children: The PODIUM consensus conference[J]. Pediatrics, 2022, 149(1 Suppl 1): s59-s65.
[22] Lopez MD. Textbook of pediatric emergency medicine[M]. 5th edition. Lippincott Williams & Wilkins, 2005.
[23] Wappner RS. Biochemical diagnosis of genetic diseases[J]. Pediatr Ann, 1993, 22(5): 282-292.
[24] Cossu M, Pintus R, Zaffanello M, et al. Metabolomic studies in inborn errors of metabolism: last years and future perspectives[J]. Metabolites, 2023, 13(3):447.
[25] Squires JE, Alonso EM, Ibrahim SH, et al. North american society for pediatric gastroenterology, hepatology, and nutrition position paper on the diagnosis and management of pediatric acute liver failure[J]. J Pediatr Gastroenterol Nutr, 2022, 74(1): 138-158.
[26] Hamed A, Hamed A, Lambert K. Branched-chain amino acids for people with hepatic encephalopathy[J]. Am Fam Physician, 2020, 101(1): Online. doi: 10.1002/14651858.
[27] Jain V, Dhawan A. Extracorporeal liver support systems in paediatric liver failure[J]. J Pediatr Gastroenterol Nutr, 2017, 64(6): 855-863.
[28] Squires JE, Rudnick DA, Hardison RM, et al. Liver transplant listing in pediatric acute liver failure: practices and participant characteristics[J]. Hepatology (Baltimore, Md), 2018, 68(6): 2338-2347.
[29] Ridel KR, Leslie ND, Gilbert DL. An updated review of the long-term neurological effects of galactosemia[J]. Pediatr Neurol, 2005, 33(3): 153-161.
[30] Chien YH, Tsai WH, Chang CL, et al. Earlier and higher dosing of alglucosidase alfa improve outcomes in patients with infantile-onset pompe disease: evidence from real-world experiences[J]. Mol Genet Metab Rep, 2020, 23: 100591.
[31] Poelman E, van den Dorpel JJA, Hoogeveen-Westerveld M, et al. Effects of higher and more frequent dosing of alglucosidase alfa and immunomodulation on long-term clinical outcome of classic infantile Pompe patients[J]. J Inherit Metab Dis, 2020, 43(6): 1243-1253.
[32] Manwaring V, Prunty H, Bainbridge K, et al. Urine analysis of glucose tetrasaccharide by HPLC; a useful marker for the investigation of patients with Pompe and other glycogen storage diseases[J]. J Inherit Metab Dis, 2012, 35(2): 311-316.
[33] Nicolino M, Byrne B, Wraith JE, et al. Clinical outcomes after long-term treatment with alglucosidase alfa in infants and children with advanced pompe disease[J]. Genet Med, 2009, 11(3): 210-219.
[34] Burton BK, Kronn DF, Hwu WL, et al. The initial evaluation of patients after positive newborn screening: recommended algorithms leading to a confirmed diagnosis of pompe disease[J]. Pediatrics, 2017, 140(Suppl 1): s14-s23.
[35] Kishnani PS, Sun B, Koeberl DD. Gene therapy for glycogen storage diseases[J]. Hum Mol Genet, 2019, 28(R1): r31-r41.
文章导航

/