极早发型炎症性肠病发病机制研究进展
Advances in the pathogenesis of very early onset inflammatory bowel disease
Received date: 2022-03-23
Online published: 2023-07-05
庄严 综述 , 黄瑞文 审校 . 极早发型炎症性肠病发病机制研究进展[J]. 临床儿科杂志, 2023 , 41(7) : 549 -555 . DOI: 10.12372/jcp.2023.22e0397
Very early onset inflammatory bowel disease (VEO-IBD) refers to those patients who have developed disease before the age of 6, and their incidence and prevalence have increased rapidly in recent years. With the development of gene sequencing technologies and platforms, the pathogenesis of VEO-IBD has been found to be related to the monogenic variations involved in multiple pathways of immunity. Whether the monogenic variation is the main cause of VEO-IBD is still controversial, but identifying the specific variant type can guide specific treatment to some extent. This paper introduces the possible mechanisms of gene variation and environmental exposure in the pathogenesis of VEO-IBD, focusing on four aspects of monogenic variation associated with VEO-IBD, in order to provide directions for early diagnosis and precise treatment.
[1] | Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease[J]. Nature, 2012, 491(7422): 119-124. |
[2] | Uhlig HH, Schwerd T, Koletzko S, et al. The diagnostic approach to monogenic very early onset inflammatory bowel disease[J]. Gastroenterology, 2014, 147(5): 990-1007. |
[3] | Benchimol EI, Fortinsky KJ, Gozdyra P, et al. Epidemiology of pediatric inflammatory bowel disease: a systematic review of international trends[J]. Inflammation Bowel Dis, 2011, 17 (1): 423-439. |
[4] | Doecke JD, Simms LA, Zhao ZZ, et al. Genetic susceptibility in IBD: overlap between ulcerative colitis and Crohn's disease[J]. Inflamm Bowel Dis, 2013, 19(2): 240-245. |
[5] | Yang SK, Hong M, Zhao W, et al. Genome-wide association study of Crohn's disease in Koreans revealed three new susceptibility loci and common attributes of genetic susceptibility across ethnic populations[J]. Gut, 2014, 63(1): 80-87. |
[6] | Tangye SG, Al-Herz W, Bousfiha A, et al. Human inborn errors of immunity: 2019 update on the classification from the international union of immunological societies expert committee[J]. J Clin Immunol, 2020, 40(1): 24-64. |
[7] | Fang YH, Luo YY, Yu JD, et al. Phenotypic and genotypic characterization of inflammatory bowel disease in children under six years of age in China[J]. World J Gastroenterol, 2018, 24(9): 1035-1045. |
[8] | Ouahed J, Spencer E, Kotlarz D, et al. Very early onset inflammatory bowel disease: a clinical approach with a focus on the role of genetics and underlying immune deficiencies[J]. Inflammation Bowel Dis, 2020, 26(6): 820-842. |
[9] | Kelsen JR, Sullivan KE, Rabizadeh S, et al. North American society for pediatric gastroenterology, hepatology, and nutrition position paper on the evaluation and management for patients with very early-onset inflammatory bowel disease[J]. J Pediatr Gastroenterol Nutr, 2020, 70(3): 389-403. |
[10] | Karamchandani-Patel G, Hanson EP, Saltzman R, et al. Congenital alterations of NEMO glutamic acid 223 result in hypohidrotic ectodermal dysplasia and immunodeficiency with normal serum IgG levels[J]. Ann Allergy Asthma Immunol, 2011, 107(1): 50-56. |
[11] | Blaydon DC, Biancheri P, Di WL, et al. Inflammatory skin and bowel disease linked to ADAM17 deletion[J]. N Engl J Med, 2011, 365(16): 1502-1508. |
[12] | Avitzur Y, Guo C, Mastropaolo LA, et al. Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease[J]. Gastroenterology, 2014, 146 (4): 1028-1039. |
[13] | Zimmer KP, Schumann H, Mecklenbeck S, et al. Esophageal stenosis in childhood: dystrophic epidermolysis bullosa without skin blistering due to collagen VII mutations[J]. Gastroenterology, 2002, 122(1): 220-225. |
[14] | Ussar S, Moser M, Widmaier M, et al. Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction[J]. PloS Genet, 2008, 4(12): e1000289. |
[15] | Naviglio S, Arrigo S, Martelossi S, et al. Severe Severe inflammatory bowel disease associated with congenital alteration of transforming growth factor beta signaling[J]. J Crohns Colitis, 2014, 8(8): 770-774. |
[16] | Fiskerstrand T, Arshad N, Haukanes BI, et al. Familial diarrhea syndrome caused by an activating GUCY2C mutation[J]. N Engl J Med, 2012, 366(17): 1586-1595. |
[17] | Khoshnevisan R, Anderson M, Babcock S, et al. NOX1 regulates collective and planktonic cell migration: insights from patients with pediatric-onset IBD and NOX1 deficiency[J]. Inflamm Bowel Dis, 2020, 26(8): 1166-1176. |
[18] | Anjani G, Vignesh P, Joshi V, et al. Recent advances in chronic granulomatous disease[J]. Genes Dis, 2020, 7 (1): 84-92. |
[19] | Henrickson SE, Jongco AM, Thomsen KF, et al. Noninfectious manifestations and complications of chronic granulomatous disease[J]. J Pediatr Infect Dis Soc, 2018, 7(suppl_1): S18-S24. |
[20] | van de Vijver E, Maddalena A, Sanal O, et al. Hematologically important mutations: leukocyte adhesion deficiency (first update)[J]. Blood Cells Mol Dis, 2012, 48(1): 53-61. |
[21] | Li QQ, Zhang HH, Dai SX. New insights and advances in pathogenesis and treatment of very early onset inflammatory bowel disease[J]. Front Pediatr, 2022, 10: 714054. |
[22] | Rohr J, Pannicke U, Doring M, et al. Chronic inflammatory bowel disease as key manifestation of atypical ARTEMIS deficiency[J]. J Clin Immunol, 2010, 30(2): 314-320. |
[23] | Felgentreff K, Perez-Becker R, Speckmann C, et al. Clinical and immunological manifestations of patients with atypical severe combined immunodeficiency[J]. Clin Immunol, 2011, 141(1): 73-82. |
[24] | Magg T, Shcherbina A, Arslan D, et al. CARMIL2 deficiency presenting as very early onset inflammatory bowel disease[J]. Inflamm Bowel Dis, 2019, 25(11): 1788-1795. |
[25] | Schwab C, Gabrysch A, Olbrich P, et al. Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects[J]. J Allergy Clin Immunol, 2018, 142(6): 193219-46. |
[26] | Schepp J, Chou J, Skrabl-Baumgartner A, et al. 14 years after discovery: clinical follow-up on 15 patients with inducible co-stimulator deficiency[J]. Front Immunol, 2017, 8: 964. |
[27] | Maekawa K, Yamada M, Okura Y, et al. X-linked agammaglobulinemia in a 10-year-old boy with a novel non-invariant splice-site mutation in Btk gene[J]. Blood Cells Mol Dis, 2010, 44 (4): 300-304. |
[28] | Catucci M, Castiello MC, Pala F, et al. Autoimmunity in Wiskott-Aldrich Syndrome: An Unsolved Enigma[J]. Front Immunol, 2012, 3: 209. |
[29] | Chan AY, Torgerson TR. Primary immune regulatory disorders: a growing universe of immune dysregulation[J]. Curr Opin Allergy Clin Immunol, 2020, 20(6): 582-590. |
[30] | van der Vliet HJ, Nieuwenhuis EE. IPEX as a result of mutations in FOXP3[J]. Clin Dev Immunol, 2007, 2007: 89017. |
[31] | Gambineri E, Ciullini Mannurita S, Hagin D, et al. Clinical, immunological, and molecular heterogeneity of 173 patients with the phenotype of immune dysregulation, polyendocrinopathy, enteropathy, X-Linked (Ipex) syndrome[J]. Front Immunol, 2018, 9: 2411. |
[32] | Caudy AA, Reddy ST, Chatila T, et al. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes[J]. J Allergy Clin Immunol, 2007, 119(2): 482-487. |
[33] | Glocker EO, Kotlarz D, Boztug K, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor[J]. N Engl J Med, 2009, 361(21): 2033-2045. |
[34] | 李朝晖, 康文清, 张耀东, 等. 新生儿炎症性肠2例报告及文献复习[J]. 临床儿科杂志, 2018, 36(2): 121-125. |
[35] | Zhang ZZ, Zhang Y, He T, et al. Homozygous IL37 mutation associated with infantile inflammatory bowel disease[J]. Proc Natl Acad Sci USA, 2021, 118(10): e2009217118. |
[36] | Pedersen J, LaCasse EC, Seidelin JB, et al. Inhibitors of apoptosis (IAPs) regulate intestinal immunity and inflammatory bowel disease (IBD) inflammation[J]. Trends Mol Med, 2014, 20(11): 652-665. |
[37] | Latour S, Aguilar C. XIAP deficiency syndrome in humans[J]. Semin Cell Dev Biol, 2015, 39: 115-123. |
[38] | Romberg N, Al Moussawi K, Nelson-Williams C, et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation[J]. Nat Genet, 2014, 46(10): 1135-1139. |
[39] | van der Burgh R, Ter Haar NM, Boes ML, et al. Mevalonate kinase deficiency, a metabolic autoinflammatory disease[J]. Clin Immunol, 2013, 147(3): 197-206. |
[40] | Li Q, Lee CH, Peters LA, Mastropaolo LA, et al. Variants in TRIM22 that affect NOD2 signaling are associated with very- early-onset inflammatory bowel disease[J]. Gastroenterology, 2016, 150 (5): 1196-1207. |
[41] | Cananzi M, Wohler E, Marzollo A, et al. IFIH1 loss-of-function variants contribute to very early-onset inflammatory bowel disease[J]. Hum Genet, 2021, 140(9): 1299-1312. |
[42] | Wang L, Aschenbrenner D, Zeng Z, et al. Gain-of-function variants in SYK cause immune dysregulation and systemic inflammation in humans and mice[J]. Nat Genet, 2021, 53(4): 500-510. |
[43] | Serra EG, Schwerd T, Moutsianas L, et al. Somatic mosaicism and common genetic variation contribute to the risk of very-early-onset inflammatory bowel disease[J]. Nat Commun, 2020, 21; 11(1): 995. |
[44] | Ek WE, D'Amato M, Halfvarson J. the history of genetics in inflammatory bowel disease[J]. Ann Gastroenterol, 2014, 27: 294-303. |
[45] | Parian A, Limketkai B, Koh J, et al. Appendectomy does not decrease the risk of future colectomy in UC: results from a large cohort and meta-analysis[J]. Gut, 2017, 66(8): 1390-1397. |
[46] | Ungaro R, Bernstein CN, Gearry R, et al. Antibiotics associated with increased risk of new-onset Crohn’s disease but not ulcerative colitis: a meta-analysis[J]. Am J Gastroenterol. 2014 Nov; 109(11): 1728-1738. |
[47] | ?rtqvist AK, Lundholm C, Halfvarson J, et al. Fetal and early life antibiotics exposure and very early onset inflammatory bowel disease: a population-based study[J]. Gut, 2019, 68(2): 218-225. |
[48] | Gevers D, Kugathasan S, Denson LA, et al. The treatment-naive microbiome in new-onset Crohn's disease[J]. Cell Host Microbe, 2014, 15(3): 382-392. |
[49] | Koren O, Goodrich JK, Cullender TC, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy[J]. Cell, 2012, 150(3): 470-480. |
[50] | Rautava S, Collado MC, Salminen S, et al. Probiotics modulate host-microbe interaction in the placenta and fetal gut: a randomized, double-blind, placebo-controlled trial[J]. Neonatology, 2012, 102(3): 178-184. |
[51] | Nogacka A, Salazar N, Suárez M, et al. Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates[J]. Microbiome, 2017, 5(1): 93. |
[52] | Halfvarson J, Brislawn CJ, Lamendella R, et al. Dynamics of the human gut microbiome in inflammatory bowel disease[J]. Nat Microbiol, 2017, 2: 17004. |
[53] | Imhann F, Vich Vila A, Bonder MJ, et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease[J]. Gut, 2018, 67(1): 108-119. |
[54] | 薛爱娟, 苗士建, 孙桦, 等. IL10RA基因突变致极早发型炎症性肠病患儿肠道菌群特征横断面调查[J]. 中国循证儿科杂志, 2018, 13(3): 200-204. |
[55] | Maraki S, Papadakis IS. Rothia mucilaginosa pneumonia: a literature review[J]. Infect Dis (Lond), 2015, 47(3): 125-129. |
[56] | Yassour M, Vatanen T, Siljander H, et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability[J]. Sci Transl Med, 2016, 8(343): 343ra81. |
/
〈 |
|
〉 |