述评

碳青霉烯类耐药铜绿假单胞菌耐药机制与治疗现状

  • 俞蕙
展开
  • 复旦大学附属儿科医院感染传染科(上海 201102)

收稿日期: 2023-05-31

  网络出版日期: 2023-08-10

Resistance mechanism and treatment of carbapenem resistant Pseudomonas aeruginosa

  • Hui YU
Expand
  • Department of Infectious Disease, Children's Hospital of Fudan University, Shanghai 201102, China

Received date: 2023-05-31

  Online published: 2023-08-10

摘要

铜绿假单胞菌是院内感染常见的条件致病菌,其在医院的环境中分布较广且可长期存活。碳青霉烯类抗生素在治疗铜绿假单胞菌导致的严重感染中起重要作用,但近年来碳青霉烯类耐药铜绿假单胞菌的暴发尤其突出,这给临床治疗带来极大挑战。文章介绍铜绿假单胞菌对碳青霉烯类抗生素的多种耐药机制,总结目前临床上应用的各种治疗方案,为临床合理用药和科学防治碳青霉烯类耐药铜绿假单胞菌感染提供可参考的思路。

本文引用格式

俞蕙 . 碳青霉烯类耐药铜绿假单胞菌耐药机制与治疗现状[J]. 临床儿科杂志, 2023 , 41(8) : 561 -565 . DOI: 10.12372/jcp.2023.23e0487

Abstract

Pseudomonas aeruginosa is a common opportunistic pathogen of nosocomial infection, which is widely distributed in the hospital environment and can survive for a long time. Carbapenems antibiotics play an important role in the treatment of serious infections caused by Pseudomonas aeruginosa. However, the outbreak of carbapenems resistant Pseudomonas aeruginosa is particularly prominent in recent years, which has made clinical treatment facing great challenges. This article introduces the main resistance mechanism of Pseudomonas aeruginosa to carbapenems antibiotics and summarizes the application of various clinical treatment schemes, and provides a reference clinical rational use of antibiotics and treatment of carbapenems resistant Pseudomonas aeruginosa infection

参考文献

[1] Tacconelli E, Carrara E, Savoldi A, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis[J]. Lancet Infect Dis, 2018, 18(3): 318-327.
[2] Fu P, Xu H, Jing C, et al. Bacterial epidemiology and antimicrobial resistance profiles in children reported by the ISPED program in China, 2016 to 2020[J]. Microbiol Spectr, 2021, 9(3): e0028321.
[3] Logan LK, Gandra S, Mandal S, et al. Multidrug- and carbapenem-resistant Pseudomonas aeruginosa in children, United States, 1999-2012[J]. J Pediatr Infect Dis Soc, 2017, 6(4): 352-359.
[4] Seifert H, von Linstow Ml, Janssen H, et al. Antimicrobial susceptibility among Gram-negative isolates in pediatric patients in Europe from 2013-2018 compared to 2004-2012: results from the ATLAS surveillance study[J]. Int J Antimicrob Agents, 2021, 58(5): 106441.
[5] Blair JM, Webber MA, Baylay AJ, et al. Molecular mechanisms of antibiotic resistance[J]. Nat Rev Microbiol, 2015, 13(1): 42-51.
[6] Hancock RE, Brinkman FS. Function of Pseudomonas porins in uptake and efflux[J]. Annu Rev Microbiol, 2002, 56: 17-38.
[7] Feng W, Huang Q, Wang Y, et al. Changes in the resistance and epidemiological characteristics of Pseudomonas aeruginosa during a ten-year period[J]. J Microbiol Immunol Infect, 2021, 54(2): 261-266.
[8] Daury L, Orange F, Taveau JC, et al. Tripartite assembly of RND multidrug efflux pumps[J]. Nat Commun, 2016, 7: 10731.
[9] Dreier J, Ruggerone P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa[J]. Front Microbiol, 2015, 6: 660.
[10] Hassuna NA, Darwish MK, Sayed M, et al. Molecular epidemiology and mechanisms of high-level resistance to meropenem and imipenem in Pseudomonas aeruginosa[J]. Infect Drug Resist, 2020, 13: 285-293.
[11] Bonnin RA, Bogaerts P, Girlich D, et al. Molecular characterization of OXA-198 carbapenemase-producing Pseudomonas aeruginosa clinical isolates[J]. Antimicrob Agents Chemother, 2018, 62(6): e02496-17.
[12] Reyes J, Komarow L, Chen L, et al. Global epidemiology and clinical outcomes of carbapenem-resistant Pseu-domonas aeruginosa and associated carbapenemases (POP): a prospective cohort study[J]. Lancet Microbe, 2023, 4(3): e159-e170.
[13] Schauer J, Gatermann SG, Hoffmann D, et al. GPC-1, a novel class A carbapenemase detected in a clinical Pseudomonas aeruginosa isolate[J]. J Antimicrob Chemother, 2020, 75(4): 911-916.
[14] Yin S, Chen P, You B, et al. Molecular typing and carbapenem resistance mechanisms of Pseudomonas aeruginosa isolated from a Chinese burn center from 2011 to 2016[J]. Front Microbiol, 2018, 9: 1135.
[15] Breidenstein EB, de la Fuente- Nú?ez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance[J]. Trends Microbiol, 2011, 19(8): 419-426.
[16] Botelho J, Grosso F, Peixe L. Antibiotic resistance in Pseudomonas aeruginosa - mechanisms, epidemiology and evolution[J]. Drug Resist Updat, 2019, 44: 100640.
[17] Botelho J, Grosso F, Peixe L. Characterization of the pJB12 plasmid from Pseudomonas aeruginosa reveals Tn 6352, a novel putative transposon associated with mobilization of the blaVIM-2-harboring In58 integron[J]. Antimicrob Agents Chemother, 2017, 61(5): e02532-16.
[18] van der Zee A, Kraak WB, Burggraaf A, et al. Spread of carbapenem resistance by transposition and conjugation among Pseudomonas aeruginosa[J]. Front Microbiol, 2018, 9: 2057.
[19] Xiong J, Alexander DC, Ma JH, et al. Complete sequence of pOZ176, a 500-kilobase IncP-2 plasmid encoding IMP-9-mediated carbapenem resistance, from outbreak isolate Pseudomonas aeruginosa 96[J]. Antimicrob Agents Chemother, 2013, 57(8): 3775-3782.
[20] López-Causapé C, Cabot G, Del Barrio-Tofi?o E, et al. The versatile mutational resistome of Pseudomonas aeruginosa[J]. Front Microbiol, 2018, 9: 685.
[21] Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms[J]. Int J Med Microbiol, 2002, 292(2): 107-113.
[22] Pang Z, Raudonis R, Glick BR, et al. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies[J]. Biotechnol Adv, 2019, 37(1): 177-192.
[23] Rasamiravaka T, Labtani Q, Duez P, et al. The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms[J]. Biomed Res Int, 2015: 759348.
[24] Chambonnier G, Roux L, Redelberger D, et al. The hybrid histidine kinase lads forms a multicomponent signal transduction system with the GacS/GacA two-component system in Pseudomonas aeruginosa[J]. PLoS Genet, 2016, 12(5): e1006032.
[25] Bordi C, Lamy MC, Ventre I, et al. Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis[J]. Mol Microbiol, 2010, 76(6): 1427-1443.
[26] Valentini M, Filloux A. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria[J]. J Biol Chem, 2016, 291(24): 12547-12555.
[27] Tamma PD, Aitken SL, Bonomo RA, et al. Infectious Diseases Society of America 2022 guidance on the treatment of extended-spectrum beta-lactamase producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa)[J]. Clin Infect Dis, 2022, 75(2): 187-212.
[28] 中华医学会呼吸病学分会感染学组. 中国铜绿假单胞菌下呼吸道感染诊治专家共识(2022年版)[J]. 中华结核和呼吸杂志, 2022, 45(8): 739-752.
[29] Paul M, Carrara E, Retamar P, et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine)[J]. Clin Microbiol Infect, 2022, 28(4): 521-547.
[30] Davido B, Fellous L, Lawrence C, et al. Ceftazidime-avibactam and aztreonam, an interesting strategy to overcome beta-lactam resistance conferred by metallo-beta-lactamases in Enterobacteriaceae and Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2017, 61(9): e01008-17.
[31] 王明贵. 广泛耐药革兰阴性菌感染的实验诊断、抗菌治疗及医院感染控制: 中国专家共识[J]. 中国感染与化疗杂志, 2017, 17(1): 82-93.
文章导航

/