综合报道

DHTKD1基因复合杂合变异致α-酮己二酸尿症1例报告

  • 王红霞 ,
  • 潘翔 ,
  • 逯军
展开
  • 中南大学湘雅医学院附属海口医院(海南 海口 570208)

收稿日期: 2022-04-26

  网络出版日期: 2023-08-10

Report a case of α-ketoadipic aciduria caused by compound heterozygous variant of DHTKD1 gene

  • Hongxia WANG ,
  • Xiang PAN ,
  • Jun LU
Expand
  • The Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou 570208, Hainan, China

Received date: 2022-04-26

  Online published: 2023-08-10

摘要

α-酮己二酸尿症为赖氨酸、羟赖氨酸和色氨酸降解代谢紊乱所致的遗传代谢病,临床表现轻重不一,受累系统广泛,主要临床表现有生长发育迟缓、肌张力减退、癫痫、共济失调、小头畸形、行为异常等。本例患儿2岁8月龄,表现为抽搐和行为异常,尿有机酸分析示α-酮己二酸明显增高,基因遗传学检测发现DHTKD1基因存在致病复合杂合变异,结合患儿临床特征和遗传学特点,确诊为α-酮己二酸尿症。经低赖氨酸、低蛋白饮食和康复治疗等对症处理后,患儿病情有所改善。该病临床罕见,为国内医学数据库首例报道。本病例报道扩充了α-酮己二酸尿症基因谱,也为临床上该病的诊治提供借鉴与参考。

本文引用格式

王红霞 , 潘翔 , 逯军 . DHTKD1基因复合杂合变异致α-酮己二酸尿症1例报告[J]. 临床儿科杂志, 2023 , 41(8) : 624 -628 . DOI: 10.12372/jcp.2023.22e0486

Abstract

Alpha-ketoadipic aciduria is a genetic metabolic disease caused by the disorder of lysine, hydroxylysine and tryptophan degradation metabolism. The clinical manifestations of the disease vary in severity and affect a wide range of systems. The main clinical manifestations include growth retardation, hypotonia, epilepsy, ataxia, microcephaly and abnormal behavior. The patient was 2 years and 8 months old and presented with convulsions and behavioral abnor malities. Urine organic acid analysis showed that α-ketoadipic acid was significantly increased. Genetic testing revealed that DHTKD1 gene had pathogenic compound heterozygous variation. Combined with the clinical and genetic characteristics of the child, the diagnosis of α-ketoadipic aciduria was confirmed. The patient's condition improved after symptomatic treatment with a low lysine and protein diet and rehabilitation. This is the first report of α-ketoadipic aciduria in Chinese medical database, which expands the genetic spectrum of α-ketoadipic aciduria and provides reference for clinical diagnosis and treatment of the disease.

参考文献

[1] Fischer MH, Gerritsen T, Opitz JM. Alpha-aminoadipic aciduria, a non-deleterious inborn metabolic defect[J]. Humangenetik, 1974, 24(4): 265-270.
[2] Stiles AR, Venturoni L, Mucci G, et al. New cases of DHTKD1 mutations in patients with 2-ketoadipic aciduria[J]. JIMD Rep, 2016, 25: 15-19.
[3] Leandro J, Violante S, Argmann CA, et al. Mild inborn errors of metabolism in commonly used inbred mouse strains[J]. Mol Genet Metab, 2019, 126(4): 388-396.
[4] Nemeria NS, Gerfen G, Yang L, et al. Evidence for functional and regulatory cross-talk between the tricarboxylic acid cycle 2-oxoglutarate dehydrogenase complex and 2-oxoadipate dehydrogenase on the l-lysine, l-hydroxylysine and l-tryptophan degradation pathways from studies in vitro[J]. Biochim Biophys Acta Bioenerg, 2018, 1859(9): 932-939.
[5] Leandro J, Houten SM. The lysine degradation pathway: subcellular compartmentalization and enzyme deficiencies[J]. Mol Genet Metab, 2020, 131(1-2): 14-22.
[6] Hagen J, Te Brinke H, Wanders RJ, et al. Genetic basis of alpha-aminoadipic and alpha-ketoadipic aciduria[J]. J Inherit Metab Dis, 2015, 38(5): 873-879.
[7] da Silva JC, Amaral AU, Cecatto C, et al. α-ketoadipic acid and α-aminoadipic acid cause disturbance of glutamatergic neurotransmission and induction of oxidative stress in vitro in brain of adolescent rats[J]. Neurotox Res, 2017, 32(2): 276-290.
[8] Rodenburg RJ. The functional genomics laboratory: functional validation of genetic variants[J]. J Inherit Metab Dis, 2018, 41(3): 297-307.
[9] Duran M, Beemer FA, Wadman SK, et al. A patient with α-ketoadipic and α-aminoadipic aciduria[J]. J Inherit Metab Dis, 1984, 7(2): 61.
[10] Xia Z W, Inoue Y, Ohse M, et al. A study on α-ketoadipic aciduria by gas chromatographic-mass spectrometry[J]. World Gastroenterol, 2000, 6(5): 766-769.
[11] Leandro J, Dodatko T, DeVita RJ, et al. Deletion of 2-aminoadipic semialdehyde synthase limits metabolite accumulation in cell and mouse models for glutaric aciduria type 1[J]. J Inherit Metab Dis, 2020, 43(6): 1154-1164.
文章导航

/