专家笔谈

发育性癫痫性脑病基因治疗展望

  • 季涛云
展开
  • 北京大学第一医院儿科(北京 100034)

收稿日期: 2023-06-20

  网络出版日期: 2023-09-05

基金资助

中央高水平医院临床科研业务费资助(北京大学第一医院国内多中心临床研究专项)(2022CR60)

Prospect of gene therapy for developmental and epileptic encephalopathy

  • Taoyun JI
Expand
  • Department of Pediatrics, The First Hospital of Peking University, Beijing 100034, China

Received date: 2023-06-20

  Online published: 2023-09-05

摘要

发育性癫痫性脑病(DEE)是以早发癫痫、脑电图异常及发育落后或倒退为主要特征的一组疾病,病因复杂,致残率、致死率高。随着二代测序技术的发展,越来越多与DEE相关的遗传性病因被发现,同时也加深了对遗传相关DEE发病机制的研究,为探索不同治疗方法尤其是基因治疗提供了基础,有望在将来开展基因治疗以改善DEE的预后。

本文引用格式

季涛云 . 发育性癫痫性脑病基因治疗展望[J]. 临床儿科杂志, 2023 , 41(9) : 650 -655 . DOI: 10.12372/jcp.2023.23e0540

Abstract

Developmental and epileptic encephalopathy (DEE) is a group of heterogeneous disorders characterized by early-onset epilepsy, abnormal electroencephalography and developmental retardation or regression. The etiology of DEE is complex, with high disability rate and fatality rate. With the development of next-generation sequencing technology, more and more genetic causes related to DEE have been discovered, which also deepens the acknowledgement on the pathogenesis of DEE. These researches provide a basis for exploring different treatment methods, especially gene therapy. It is expected that gene therapy will be carried out in the future to improve the prognosis of DEE.

参考文献

[1] Palmer EE, Howell K, Scheffer IE. Natural history studies and clinical trial readiness for genetic developmental andepileptic encephalopathies[J]. Neurotherapeutics, 2021, 18(3): 1432-1444.
[2] Ware TL, Huskins SR, Grinton BE, et al. Epidemiology and etiology of infantile developmental and epileptic encephalopathies in Tasmania[J]. Epilepsia Open, 2019, 4(3): 504-510.
[3] Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology[J]. Epilepsia, 2017, 58(4): 512-521.
[4] Zuberi SM, Wirrell E, Yozawitz E, et al. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: position statement by the ILAE Task Force on Nosology and Definitions[J]. Epilepsia, 2022, 63(6): 1349-1397.
[5] Glasscock E, Qian J, Yoo JW, et al. Masking epilepsy by combining two epilepsy genes[J]. Nat Neurosci, 2007, 10: 1554-1558.
[6] Mefford HC, Yendle SC, Hsu C, et al. Rare copy number variants are an important cause of epileptic encephalopathies[J]. Ann Neurol, 2011, 70(6): 974-985.
[7] Ma Y, Chen C, Wang Y, et al. Analysis copy number variation of Chinese children in early-onset epileptic encephalopathies with unknown cause: CNVs analysis in EOEEs[J]. Clin Genet, 2016, 90(5): 428-436.
[8] Myers CT, Hollingsworth G, Muir AM, et al. Parental mosaicism in “de novo” epileptic encephalopathies[J]. N Engl J Med, 2018, 378: 1646-1648.
[9] de Lange IM, Koudijs MJ, van ’t Slot R, et al. Assessment of parental mosaicism in SCN1A-related epilepsy by single-molecule molecular inversion probes and next-generation sequencing[J]. J Med Genet, 2018, 56: 75-80.
[10] Carvill GL, Engel KL, Ramamurthy A, et al. Aberrant inclusion of a poison exon causes Dravet syndrome and related SCN1A-associated genetic epilepsies[J]. Am J Hum Genet, 2018, 103(6): 1022-1029.
[11] Winawer MR, Griffin NG, Samanamud J, et al. Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy[J]. Ann Neurol, 2018, 83(6): 1133-1146.
[12] Lee JH, Huynh M, Silhavy JL, et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly[J]. Nat Genet, 2012, 44(8): 941-945.
[13] Sim NS, Seo Y, Lim JS, et al. Brain somatic mutations in SLC35A2 cause intractable epilepsy with aberrant N-glycosylation[J]. Neurol Genet, 2018, 4(6): e294.
[14] Ye Z, Chatterton Z, Pflueger J, et al. Cerebrospinal fluid liquid biopsy for detecting somatic mosaicism in brain[J]. Brain Commun, 2021, 3(1): fcaa235.
[15] Kim S, Baldassari S, Sim NS, et al. Detection of brain somatic mutations in cerebrospinal fluid from refractory epilepsy patients[J]. Ann Neurol, 2021, 89(6): 1248-1252.
[16] Guerrini R, Conti V, Mantegazza M, et al. Developmental and epileptic encephalopathies: from genetic heterogeneity to phenotypic continuum[J]. Physiol Rev, 2023, 103(1): 433-513.
[17] Hasan S, Balobaid A, Grottesi A, et al. Lethal digenic mutations in the K1 channels Kir4.1 (KCNJ10) and SLACK (KCNT1) associated with severe-disabling seizures and neurodevelopmental delay[J]. J Neurophysiol, 2017, 118: 2402-2411.
[18] Lado FA, Rubboli G, Capovilla G, et al. Pathophysiology of epileptic encephalopathies[J]. Epilepsia, 2013, 54: 6-13.
[19] Scharfman HE. The neurobiology of epilepsy[J]. Curr Neurol Neurosci Rep, 2007, 7: 348-354.
[20] Galanopoulou AS, Moshe SL. In search of epilepsy biomarkers in the immature brain: goals, challenges and strategies[J]. Biomark Med, 2011, 5: 615-628.
[21] Haas KZ, Sperber EF, Opanashuk LA, et al. Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling[J]. Hippocampus, 2001, 11: 615-625.
[22] Yu FH, Mantegazza M, Westenbroek RE, et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy[J]. Nat Neurosci, 2006, 9: 1142-1149.
[23] Ogiwara I, Miyamoto H, Morita N, et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an SCN1A gene mutation[J]. J Neurosci, 2007, 27: 5903-5914.
[24] Ito S, Ogiwara I, Yamada K, et al. Mouse with Nav1.1 haploinsufficiency, a model for Dravet syndrome, exhibits lowered sociability and learning impairment[J]. Neurobiol Dis, 2013, 49: 29-40.
[25] Mantegazza M, Broccoli V. SCN1A/NaV1.1 channel-opathies: mechanisms in expression systems, animal models, and human iPSC models[J]. Epilepsia, 2019, 60: S25-S38.
[26] Mantegazza M, Cestèle S. Pathophysiological mechanisms of migraine and epilepsy: similarities and differences[J]. Neurosci Lett, 2018, 667: 92-102
[27] Prontera P, Sarchielli P, Caproni S, et al. Epilepsy in hemiplegic migraine: genetic mutations and clinical implications[J]. Cephalalgia, 2018, 38:361-173.
[28] Salgueiro-Pereira AR, Duprat F, Pousinha PA, et al. A two-hitstory: seizures and genetic mutation interaction sets phenotype severity in SCN1A epilepsies[J]. Neurobiol Dis, 2019, 125: 31-44.
[29] Gardella E, Marini C, Trivisano M, et al. The phenotype of SCN8A developmental and epileptic encephalopathy[J]. Neurology, 2018, 91: e1112-e1124.
[30] Johannesen KM, Liu Y, Koko M, et al. Genotype-phenotype correlations in SCN8A-related disorders reveal prognostic and therapeutic implications[J]. Brain, 2022, 145: 2991-3009.
[31] Liu Y, Schubert J, Sonnenberg L, et al. Neuronal mechanisms of mutations in SCN8A causing epilepsy or intellectual disability[J]. Brain, 2019, 142: 376-390.
[32] Wagnon JL, Barker BS, Ottolini M, et al. Loss-of-function variants of SCN8A in intellectual disability without seizures[J]. Neurol Genet, 2017, 3: e170.
[33] Boerma RS, Braun KP, van den Broek MP, et al. Remarkable phenytoin sensitivity in 4 children with SCN8A related epilepsy: a molecular neuropharmacological approach[J]. Neurotherapeutics, 2016, 13: 192-197.
[34] Du J, Simmons S, Brunklaus A, et al. Differential excitatory vs inhibitory SCN expression at single cell level regulates brain sodium channel function in neurodevelopmental disorders[J]. Eur J Paediatr Neurol, 2020, 24: 129-133.
[35] Stamberger H, Nikanorova M, Willemsen MH, et al. STXBP1 encephalopathy: a neurodevelopmental disorder including epilepsy[J]. Neurology, 2016, 86: 954-962.
[36] Tanenhaus A, Stowe T, Young A, et al. Cell-selective adeno-associated virus-mediated SCN1A gene regulation therapy rescues mortality and seizure phenotypes in a Dravet syndrome mouse model and is well tolerated in nonhuman primates[J]. Hum Gene Ther, 2022, 33(11-12): 579-597.
[37] Prabhakar S, Cheah PS, Zhang X, et al. Long-term therapeutic efficacy of intravenous AAV-mediated hamartin replacement in mouse model of tuberous sclerosis type 1[J]. Mol Ther Methods Clin Dev, 2019, 15:18-26.
[38] Gao Y, Irvine EE, Eleftheriadou I, et al. Gene replacement ameliorates deficits in mouse and human models of cyclin-dependent kinase-like 5 disorder[J]. Brain, 2020, 143(3): 811-832.
[39] Doxakis E. Therapeutic antisense oligonucleotides for movement disorders[J]. Med Res Rev, 2021, 41(5): 2656-2688.
[40] Lenk GM, Jafar-Nejad P, Hill SF, et al. Scn8a antisense oligonucleotide is protective in mouse models of SCN8A encephalopathy and Dravet syndrome[J]. Ann Neurol, 2020, 87(3): 339-346.
[41] Han Z, Chen C, Christiansen A, et al. Antisense oligonucleotides increase SCN1A expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome[J]. Sci Transl Med, 2020, 12: eaaz6100.
[42] Wengert ER, Wagley PK, Strohm SM, et al. Targeted augmentation of nuclear gene output (TANGO) of SCN1A rescues parvalbumin interneuron excitability and reduces seizures in a mouse model of Dravet syndrome[J]. Brain Res, 2022, 1775: 147743.
[43] ClinicalTrials.gov. NCT04442295. An open-label study to investigate the safety of single and multiple ascending doses of STK-001 in children and adolescents with Dravet syndrome [DB/OL]. [2023-03-08]. Bethesda, MD, USA: U.S. National Library of Medicine, 2022. https://www.clinicaltrials.gov/ct2/show/record/NCT04442295.
[44] Guerrini R, Balestrini S, Wirrell EC, et al. Monogenic epilepsies: disease mechanisms, clinical phenotypes, and targeted therapies[J]. Neurology, 2021, 97(17): 817-831.
[45] Turner TJ, Zourray C, Schorge S, et al. Recent advances in gene therapy for neurodevelopmental disorders with epilepsy[J]. J Neurochem, 2021, 157(2): 229-262.
文章导航

/