利用光学基因组图谱技术诊断杜氏肌营养不良1例报告
收稿日期: 2022-10-24
网络出版日期: 2024-02-02
基金资助
上海市科委自然科学基金(20ZR1446300)
Diagnosis of a child with Duchenne muscular dystrophy using optical genome mapping
Received date: 2022-10-24
Online published: 2024-02-02
目的 初步探讨光学基因组图谱技术(OGM)在杜氏肌营养不良(DMD)中的诊断价值。方法 对1例疑似DMD的患儿进行OGM分析,以期发现致病的分子基础。结果 1例男性患儿,7月龄时发现肌酸激酶显著升高,临床疑诊DMD。经多重连接依赖性探针扩增分析(MLPA)和全外显子组测序检测均未发现致病性基因变异。21月龄独走不稳,易摔跤,查体发现双侧腓肠肌肥大、肌力低下。2岁时通过OGM识别出DMD基因内一个长约711kb的臂内倒位,涉及该基因44~55号区段的12个外显子,实现了该患儿的分子诊断。结论 OGM技术能够成功识别出DMD基因的倒位突变,有望成为该病的补充诊断手段。
梁欢 , 张惠文 . 利用光学基因组图谱技术诊断杜氏肌营养不良1例报告[J]. 临床儿科杂志, 2024 , 42(2) : 146 -150 . DOI: 10.12372/jcp.2024.22e1407
Objective To explore the application of optical genome mapping (OGM) in the diagnosis of Duchenne muscular dystrophy (DMD). Methods An OGM analysis was performed in a child with suspected DMD with a view to discovering the molecular basis of the pathogenesis. Results A male child with significantly elevated creatine kinase at 7 months of age was clinically suspected of having DMD. No pathogenic gene variants were detected by multiplex ligation-dependent probe amplification analysis (MLPA) and exome sequencing. At 1 year and 9 months, the child was unstable and prone to falls, and bilateral gastrocnemius muscle hypertrophy and muscle weakness were detected on physical examination. At the age of 2 years, an intra-arm inversion of about 711kb involving 12 exons of the 44-55 region of the gene was identified by OGM, which enabled the molecular diagnosis of this child. Conclusions OGM technology can successfully detect the reverse mutation of the DMD gene, and is thus poised to become a supplementary diagnostic tool for this disease.
Key words: optical genome mapping; Duchenne muscular dystrophy; DMD gene; child
[1] | Crisafulli S, Sultana J, Fontana A, et al. Global epidemiology of Duchenne muscular dystrophy: an updated systematic review and meta-analysis[J]. Orphanet J Rare Dis, 2020, 15(1): 141. |
[2] | Megarbane A, Bizzari S, Deepthi A, et al. A 20-year clinical and genetic neuromuscular cohort analysis in Lebanon: an international effort[J]. J Neuromuscul Dis, 2022, 9(1): 193-210. |
[3] | Duan D, Goemans N, Takeda S, et al. Duchenne muscular dystrophy[J]. Nat Rev Dis Primers, 2021, 7(1): 13. |
[4] | Aartsma-Rus A, Van Deutekom JC, Fokkema IF, et al. Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule[J]. Muscle Nerve, 2006, 34(2): 135-144. |
[5] | Magri F, Govoni A, D'Angelo MG, et al. Genotype and phenotype characterization in a large dystrophinopathic cohort with extended follow-up[J]. J Neurol, 2011, 258(9): 1610-1623. |
[6] | Xu Y, Wang H, Xiao B, et al. Novel noncontiguous duplications identified with a comprehensive mutation analysis in the DMD gene by DMD gene-targeted sequencing[J]. Gene, 2018, 645: 113-118. |
[7] | Guo R, Zhu G, Zhu H, et al. DMD mutation spectrum analysis in 613 Chinese patients with dystrophinopathy[J]. J Hum Genet, 2015, 60(8): 435-442. |
[8] | Mak AC, Lai YY, Lam ET, et al. Genome-wide structural variation detection by genome mapping on nanochannel arrays[J]. Genetics, 2016, 202(1): 351-362. |
[9] | Cao H, Hastie AR, Cao D, et al. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology[J]. Gigascience, 2014, 3(1): 34. |
[10] | Barseghyan H, Tang W, Wang RT, et al. Next-generation mapping: a novel approach for detection of pathogenic structural variants with a potential utility in clinical diagnosis[J]. Genome Med, 2017, 9(1): 90. |
[11] | Redin C, Brand H, Collins RL, et al. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies[J]. Nat Genet, 2017, 49(1): 36-45. |
[12] | 北京医学会罕见病分会, 北京医学会神经内科分会神经肌肉病学组, 中国肌营养不良协作组. Duchenne型肌营养不良多学科管理专家共识[J]. 中华医学杂志, 2018, (35): 2803-2814. |
[13] | McNaughton JC, Hughes G, Jones WA, et al. The evolution of an intron: analysis of a long, deletion-prone intron in the human dystrophin gene[J]. Genomics, 1997, 40(2): 294-304. |
[14] | Bladen CL, Salgado D, Monges S, et al. The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations[J]. Hum Mutat, 2015, 36(4): 395-402. |
[15] | Kong X, Zhong X, Liu L, et al. Genetic analysis of 1051 Chinese families with Duchenne/Becker Muscular Dystrophy[J]. BMC Med Genet, 2019, 20(1): 139. |
[16] | Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management[J]. Lancet Neurol, 2018, 17(3): 251-267. |
[17] | 中华医学会医学遗传学分会遗传病临床实践指南撰写组. 杜氏进行性肌营养不良的临床实践指南[J]. 中华医学遗传学杂志, 2020, 37(3): 258-262. |
[18] | Hollox EJ, Zuccherato LW, Tucci S. Genome structural variation in human evolution[J]. Trends Genet, 2022, 38(1): 45-58. |
[19] | Mantere T, Neveling K, Pebrel-Richard C, et al. Optical genome mapping enables constitutional chromosomal aberration detection[J]. Am J Hum Genet, 2021, 108(8): 1409-1422. |
[20] | Neveling K, Mantere T, Vermeulen S, et al. Next-generation cytogenetics: comprehensive assessment of 52 hematological malignancy genomes by optical genome mapping[J]. Am J Hum Genet, 2021, 108(8): 1423-1435. |
[21] | Cummings BB, Marshall JL, Tukiainen T, et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing[J]. Sci Transl Med, 2017, 9(386): eaal5209. |
[22] | Xie Z, Sun C, Zhang S, et al. Long-read whole-genome sequencing for the genetic diagnosis of dystrophinopathies[J]. Ann Clin Transl Neurol, 2020, 7(10): 2041-2046. |
[23] | Lam ET, Hastie A, Lin C, et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly[J]. Nat Biotechnol, 2012, 30(8): 771-776. |
[24] | Sahajpal NS, Barseghyan H, Kolhe R, et al. Optical genome mapping as a next-generation cytogenomic tool for detection of structural and copy number variations for prenatal genomic analyses[J]. Genes (Basel), 2021, 12(3): 398. |
[25] | Jaratlerdsiri W, Chan EKF, Petersen DC, et al. Next generation mapping reveals novel large genomic rearrangements in prostate cancer[J]. Oncotarget, 2017, 8(14): 23588-23602. |
[26] | 郝娜, 周京, 李萌萌, 等. 光学基因组图谱技术在染色体结构变异检出的效能及初步应用评估[J]. 中华预防医学杂志, 2022, 56(5): 632-639. |
[27] | Dremsek P, Schwarz T, Weil B, et al. Optical genome mapping in routine human genetic diagnostics-its advantages and limitations[J]. Genes (Basel), 2021, 12(12): 1958. |
/
〈 |
|
〉 |