述评

数智化赋能儿童支气管哮喘的诊治和管理

  • 王颖硕 ,
  • 陈志敏
展开
  • 浙江大学医学院附属儿童医院呼吸内科 国家儿童健康与疾病临床医学研究中心 浙江大学医学院附属儿童医院哮喘诊治中心(浙江杭州 310057)

收稿日期: 2025-05-07

  录用日期: 2025-06-10

  网络出版日期: 2025-06-27

基金资助

浙江省“尖兵计划”项目(2023C03009)

Leveraging digital intelligence to enhance the diagnosis, treatment, and management of pediatric bronchial asthma

  • WANG Yingshuo ,
  • CHEN Zhimin
Expand
  • Department of Pulmonology, Children's Hospital Affiliated to Zhejiang University School of Medicine, National Clinical Research Center for Children's Health and Disease, Asthma Diagnosis and Treatment Center, Children's Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310057, Zhejiang, China

Received date: 2025-05-07

  Accepted date: 2025-06-10

  Online published: 2025-06-27

摘要

我国儿童支气管哮喘患病人数众多,然而控制情况并不乐观。今年4月《儿童支气管哮喘诊断与防治指南(2025)》发表,为儿童哮喘防治工作指明了新的方向。而近年来,数智化技术发展迅速,国家亦鼓励医疗系统采用数智化技术提高医疗服务质量。值此契机,针对当前儿童哮喘防控工作面临的挑战,本文总结了数智化技术在儿童哮喘诊断、儿童肺功能质控和智能判读、哮喘全病程管理方面的应用,并针对数智化技术推进哮喘防控工作尚需解决的难题以及今后的建设工作提出了具体建议。

本文引用格式

王颖硕 , 陈志敏 . 数智化赋能儿童支气管哮喘的诊治和管理[J]. 临床儿科杂志, 2025 , 43(7) : 500 -504 . DOI: 10.12372/jcp.2025.25e0503

Abstract

Numerous children in China are affected by asthma, with less-than-ideal disease control. In April this year, the "Guidelines for the Diagnosis and Management of Pediatric Bronchial Asthma (2025)" was released, offering new guidance for pediatric asthma management. In recent years, digital and intelligent technologies have developed rapidly, and the state also encourages the medical system to adopt digital and intelligent technologies to improve the quality of medical services. Taking this opportunity, in response to the challenges currently faced in the prevention and control of childhood asthma, this article summarizes the application of digital intelligence technology in the diagnosis of childhood asthma, quality control and intelligent interpretation of children's lung function, and the full-course management of asthma. It also puts forward specific suggestions for the problems that need to be solved in promoting the prevention and control of asthma through digital intelligence technology and the future construction work.

参考文献

[1] 全国儿科哮喘协作组, 中国疾病预防控制中心环境与健康相关产品安全所. 第三次中国城市儿童哮喘流行病学调查[J]. 中华儿科杂志, 2013, 51(10): 729-735.
  The National Cooperative Group on Childhood Asthma, Institute of Environmental Health and Related Product Safety, Chinese Center for Disease Control and Prevention. Third nationwide survey of childhood asthma in urban areas of China[J]. Zhonghua Erke Zazhi, 2013, 51(10): 729-735.
[2] Bisgaard H, N?rgaard S, Sevelsted A, et al. Asthma-like symptoms in young children increase the risk of COPD[J]. J Allergy Clin Immunol, 2021, 147(2): 569-576.
[3] 中华医学会儿科学分会呼吸学组, 中华儿科杂志编辑委员会, 中国医药教育协会儿科专业委员会. 儿童支气管哮喘诊断与防治指南(2025)[J]. 中华儿科杂志, 2025, 63(4): 324-337.
  The Subspecialty Group of Respiratory, the Society of Pediatrics, Chinese Medical Association, The Editorial Board, Chinese Journal of Pediatrics, China Medicine Education Association Committee on Pediatrics. Guidelines for the diagnosis and optimal management of asthma in children (2025)[J]. Zhonghua Erke Zazhi, 2025, 63(4): 324-337.
[4] 工业和信息化部, 商务部, 国家卫生健康委, 等. 医药工业数智化转型实施方案(2025—2030年)[EB/OL]. [2025-05-07]. https://www.miit.gov.cn/zwgk/zcwj/wjfb/tz/art/2025/art_13998d1c720e41438c5d25a943101f76.html.
[5] Jeminiwa R, Hohmann L, Qian J, et al. Impact of eHealth on medication adherence among patients with asthma: a systematic review and meta-analysis[J]. Respir Med, 2019, 149: 59-68.
[6] Colicino S, Munblit D, Minelli C, et al. Validation of childhood asthma predictive tools: a systematic review[J]. Clin Exp Allergy, 2019, 49(4): 410-418.
[7] Kothalawala DM, Murray CS, Simpson A, et al. Development of childhood asthma prediction models using machine learning approaches[J]. Clin Transl Allergy, 2021, 11(9): e12076.
[8] Yu G, Li Z, Li S, et al. The role of artificial intelligence in identifying asthma in pediatric inpatient setting[J]. Ann Transl Med, 2020, 8(21): 1367.
[9] Oulmalme C, Nakouri H, Jaafar F. A systematic review of generative AI approaches for medical image enhancement: comparing GANs, transformers, and diffusion models[J]. Int J Med Inform, 2025, 199: 105903.
[10] Mulshine JL, Avila RS, Silva M, et al. AI integrations with lung cancer screening: considerations in developing AI in a public health setting[J]. Eur J Cancer, 2025, 220: 115345.
[11] Luo AZ, Whitmire E, Stout JW, et al. Automatic characterization of user errors in spirometry[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2017, 2017: 4239-4242.
[12] Velickovski F, Ceccaroni L, Marti R, et al. Automated spirometry quality assurance: supervised learning from multiple experts[J]. IEEE J Biomed Health Inform, 2018, 22(1): 276-284.
[13] Das N, Verstraete K, Stanojevic S, et al. Deep-learning algorithm helps to standardise ATS/ERS spirometric acceptability and usability criteria[J]. Eur Respir J, 2020, 56(6): 2000603.
[14] Jeon ET, Park H, Lee JK, et al. Deep learning-based chronic obstructive pulmonary disease exacerbation prediction using flow-volume and volume-time curve imaging: retrospective cohort study[J]. J Med Internet Res, 2025, 27: e69785.
[15] Das N, Happaerts S, Gyselinck I, et al. Collaboration between explainable artificial intelligence and pulmonologists improves the accuracy of pulmonary function test interpretation[J]. Eur Respir J, 2023, 61(5): 2201720.
[16] Mythili A, Sujatha CM, Srinivasan S, et al. Prediction of forced expiratory volume in spirometric pulmonary function test using adaptive neuro fuzzy inference system[J]. Biomed Sci Instrum, 2012, 48: 508-515.
[17] Ioachimescu OC, Stoller JK. An Alternative spirometric measurement. area under the expiratory flow-volume curve[J]. Ann Am Thorac Soc, 2020, 17(5): 582-588.
[18] 傅唯佳, 汤梁峰, 叶成杰, 等. 运用人工智能技术进行肺功能数据库构建并辅助诊断实践[J]. 中国医疗器械信息, 2022, 28(14): 147-150.
  Fu WJ, Tang LF, Ye CJ, et al. Implementation of an artificial intelligence based clinical decision support system on historical pulmonary function reports[J]. Zhongguo Yiliao Qixie Xinxi, 2022, 28(14): 147-150.
[19] Almutairi M, Marriott JF, Mansur A. Effect of monitoring adherence to regular inhaled corticosteroid (ICS) alone or in combination with a long-acting β2-agonist (LABA) using electronic methods on asthma outcomes: a narrative systematic review[J]. BMJ Open, 2023, 13(8): e074127.
文章导航

/