Journal of Clinical Pediatrics ›› 2024, Vol. 42 ›› Issue (10): 837-842.doi: 10.12372/jcp.2024.24e0922
• Expert Review • Previous Articles Next Articles
FU Lijun, QIAO Yuhui
Received:
2024-09-05
Published:
2024-10-15
Online:
2024-10-08
FU Lijun, QIAO Yuhui. The current status and progress of diagnosis and treatment of glycogen storage cardiomyopathy[J].Journal of Clinical Pediatrics, 2024, 42(10): 837-842.
[1] | Melvin JJ. Pompe's disease[J]. Arch Neurol, 2000, 57(1): 134-135. |
[2] | 傅立军, 窦薇, 周爱卿, 等. 糖原累积病Ⅱ型的临床分析和基因学检测[J]. 临床儿科杂志, 2006, 24(12): 962-965. |
[3] | 傅立军, 陈树宝, 邱文娟, 等. 婴儿型糖原贮积病Ⅱ型的临床特点及其转归[J]. 中华医学杂志, 2013, 93(20): 1567-1570. |
[4] |
Fu L, Qiu W, Yu Y, et al. Clinical and molecular genetic study of infantile-onset Pompe disease in Chinese patients: identification of 6 novel mutations[J]. Gene, 2014, 535(1): 53-59.
doi: 10.1016/j.gene.2013.10.066 pmid: 24269976 |
[5] | Lim JA, Li L, Raben N. Pompe disease: from patho-physiology to therapy and back again[J]. Front Aging Neurosci, 2014, 6: 177. |
[6] |
Niño MY, Wijgerde M, de Faria DOS, et al. Enzymatic diagnosis of Pompe disease: lessons from 28 years of experience[J]. Eur J Hum Genet, 2021, 29(3): 434-446.
doi: 10.1038/s41431-020-00752-2 pmid: 33162552 |
[7] |
Ausems MG, Lochman P, van Diggelen OP, et al. A diagnostic protocol for adult-onset glycogen storage disease type Ⅱ[J]. Neurology, 1999, 52(4): 851-853.
pmid: 10078739 |
[8] | 邱正庆, 罗小平, 傅君芬. 儿童糖原累积病Ⅱ型诊断及治疗中国专家共识[J]. 中华儿科杂志, 2021, 59(6): 439-445. |
[9] | Chen X, Liu T, Huang M, et al. Clinical and molecular characterization of infantile-onset Pompe disease in mainland Chinese patients: identification of two common mutations[J]. Genet Test Mol Biomarkers, 2017, 21(6): 391-396. |
[10] |
Shigeto S, Katafuchi T, Okada Y, et al. Improved assay for differential diagnosis between Pompe disease and acid α-glucosidase pseudodeficiency on dried blood spots[J]. Mol Genet Metab, 2011, 103(1): 12-17.
doi: 10.1016/j.ymgme.2011.01.006 pmid: 21320792 |
[11] |
Oba-Shinjo SM, da Silva R, Andrade FG, et al. Pompe disease in a Brazilian series: clinical and molecular analyses with identification of nine new mutations[J]. J Neurol, 2009, 256(11): 1881-1890.
doi: 10.1007/s00415-009-5219-y pmid: 19588081 |
[12] | 刘炼双, 傅立军, 缪艳, 等. 外周血涂片检查对婴儿型庞贝病筛查和诊断的应用价值[J]. 临床儿科杂志, 2019, 37(7): 503-506. |
[13] | Kishnani PS, Nicolino M, Voit T, et al. Chinese hamster ovary cell-derived recombinant human acid alpha-glucosidase in infantile-onset Pompe disease[J]. J Pediatr, 2006, 149(1): 89-97. |
[14] | Chien YH, Lee NC, Chen CA, et al. Long-term prognosis of patients with infantile-onset Pompe disease diagnosed by newborn screening and treated since birth[J]. J Pediatr, 2015, 166(4): 985-991. |
[15] | Zhu D, Zhu J, Qiu W, et al. A multi-centre prospective study of the efficacy and safety of alglucosidase alfa in Chinese patients with infantile-onset pompe disease[J]. Front Pharmacol, 2022, 13: 903488. |
[16] |
Dhillon S. Avalglucosidase alfa: first approval[J]. Drugs, 2021, 81(15): 1803-1809.
doi: 10.1007/s40265-021-01600-3 pmid: 34591286 |
[17] |
Diaz-Manera J, Kishnani PS, Kushlaf H, et al. Safety and efficacy of avalglucosidase alfa versus alglucosidase alfa in patients with late-onset Pompe disease (COMET): a phase 3, randomised, multicentre trial[J]. Lancet Neurol, 2021, 20(12): 1012-1026.
doi: 10.1016/S1474-4422(21)00241-6 pmid: 34800399 |
[18] | Kishnani PS, Kronn D, Brassier A, et al. Safety and efficacy of avalglucosidase alfa in individuals with infantile-onset Pompe disease enrolled in the phase 2, open-label Mini-COMET study: The 6-month primary analysis report[J]. Genet Med, 2023, 25(2): 100328. |
[19] | Yang CF, Yang CC, Liao HC, et al. Very early treatment for infantile-onset Pompe disease contributes to better outcomes[J]. J Pediatr, 2016, 169: 174-180. |
[20] |
Ronzitti G, Collaud F, Laforet P, et al. Progress and challenges of gene therapy for Pompe disease[J]. Ann Transl Med, 2019, 7(13): 287.
doi: 10.21037/atm.2019.04.67 pmid: 31392199 |
[21] |
Do HV, Khanna R, Gotschall R. Challenges in treating Pompe disease: an industry perspective[J]. Ann Transl Med, 2019, 7(13): 291.
doi: 10.21037/atm.2019.04.15 pmid: 31392203 |
[22] |
Bellotti AS, Andreoli L, Ronchi D, et al. Molecular approaches for the treatment of Pompe disease[J]. Mol Neurobiol, 2020, 57(2): 1259-1280.
doi: 10.1007/s12035-019-01820-5 pmid: 31713816 |
[23] | Borie-Guichot M, Tran ML, Génisson Y, et al. Pharma-cological chaperone therapy for Pompe disease[J]. Molecules, 2021, 26(23): 7223. |
[24] | Fu L, Luo S, Cai S, et al. Identification of LAMP2 mutations in early-onset Danon disease with hypertrophic cardiomyopathy by targeted next-generation sequencing[J]. Am J Cardiol, 2016, 118(6): 888-894. |
[25] | Nishino I, Fu J, Tanji K, et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease)[J]. Nature, 2000, 406(6798): 906-910. |
[26] |
Mattei MG, Matterson J, Chen JW, et al. Two human lysosomal membrane glycoproteins, h-lamp-1 and h-lamp-2, are encoded by genes localized to chromosome 13q34 and chromosome Xq24-25, respectively[J]. J Biol Chem, 1990, 265(13): 7548-7551.
pmid: 2332441 |
[27] | 王吴婉, 朱园园, 吴炜, 等. Danon病临床特征分析[J]. 中华心血管杂志, 2023, 51(1): 51-57. |
[28] |
D'Souza RS, Levandowski C, Slavov D, et al. Danon disease: clinical features, evaluation, and management[J]. Circ Heart Fail, 2014, 7(5): 843-849.
doi: 10.1161/CIRCHEARTFAILURE.114.001105 pmid: 25228319 |
[29] |
Sugie K, Yamamoto A, Murayama K, et al. Clinico-pathological features of genetically confirmed Danon disease[J]. Neurology, 2002, 58(12): 1773-1778.
doi: 10.1212/wnl.58.12.1773 pmid: 12084876 |
[30] | Sugie K, Noguchi S, Kozuka Y, et al. Autophagic vacuoles with sarcolemmal features delineate Danon disease and related myopathies[J]. J Neuropathol Exp Neurol, 2005, 64(6): 513-522. |
[31] |
Hong Kimberly N, Eshraghian Emily A, Arad M, et al. International consensus on differential diagnosis and management of patients with Danon disease: JACC State-of-the-Art Review[J]. J Am Coll Cardiol, 2023, 82(16): 1628-1647.
doi: 10.1016/j.jacc.2023.08.014 pmid: 37821174 |
[32] | Manso AM, Hashem SI, Nelson BC, et al. Systemic AAV9.LAMP2B injection reverses metabolic and physiologic multiorgan dysfunction in a murine model of Danon disease[J]. Sci Transl Med, 2020, 12(535) : eaax1744. |
[33] | Whitley JA, Cai H. Engineering extracellular vesicles to deliver CRISPR ribonucleoprotein for gene editing[J]. J Extracell Vesicles, 2023, 12(9): e12343. |
[34] | Fan Z, Wan LX, Jiang W, et al. Targeting autophagy with small-molecule activators for potential therapeutic purposes[J]. Eur J Med Chem, 2023, 260: 115722. |
[35] |
Lopez-Sainz A, Dominguez F, Lopes LR, et al. Clinical features and natural history of PRKAG2 variant cardiac glycogenosis[J]. J Am Coll Cardiol, 2020, 76(2): 186-197.
doi: S0735-1097(20)35324-9 pmid: 32646569 |
[36] |
Murphy RT, Mogensen J, McGarry K, et al. Adenosine monophosphate-activated protein kinase disease mimicks hypertrophic cardiomyopathy and Wolff-Parkinson-White syndrome: natural history[J]. J Am Coll Cardiol, 2005, 45(6): 922-930.
doi: 10.1016/j.jacc.2004.11.053 pmid: 15766830 |
[37] |
Gollob MH, Green MS, Tang AS, et al. PRKAG2 cardiac syndrome: familial ventricular preexcitation, conduction system disease, and cardiac hypertrophy[J]. Curr Opin Cardiol, 2002, 17(3): 229-234.
doi: 10.1097/00001573-200205000-00004 pmid: 12015471 |
[38] | Back Sternick E, de Almeida Araújo S, Ribeiro da Silva Camargos E, et al. Atrial pathology findings in a patient with PRKAG2 cardiomyopathy and persistent atrial fibrillation[J]. Circ Arrhythm Electrophysiol, 2016, 9(12) : e004455. |
[39] | Hu D, Hu D, Liu L, et al. Identification, clinical mani-festation and structural mechanisms of mutations in AMPK associated cardiac glycogen storage disease[J]. EBioMedicine, 2020, 54: 102723. |
[40] |
Thevenon J, Laurent G, Ader F, et al. High prevalence of arrhythmic and myocardial complications in patients with cardiac glycogenosis due to PRKAG2 mutations[J]. Europace, 2017, 19(4): 651-659.
doi: 10.1093/europace/euw067 pmid: 28431061 |
[41] |
Daniel T, Carling D. Functional analysis of mutations in the gamma 2 subunit of AMP-activated protein kinase associated with cardiac hypertrophy and Wolff-Parkinson-White syndrome[J]. J Biol Chem, 2002, 277(52): 51017-51024.
doi: 10.1074/jbc.M207093200 pmid: 12397075 |
[42] | Porto AG, Brun F, Severini GM, et al. Clinical Spectrum of PRKAG2 Syndrome[J]. Circ Arrhythm Electrophysiol, 2016, 9(1): e003121. |
[43] | 石璐, 王昆鹏, 侯小锋. PRKAG2心脏综合征发病机制及诊疗进展[J]. 中华心律失常学杂志, 2018, 22(3): 267-270. |
[44] |
Xie C, Zhang YP, Song L, et al. Genome editing with CRISPR/Cas9 in postnatal mice corrects PRKAG2 cardiac syndrome[J]. Cell Res, 2016, 26(10): 1099-1111.
doi: 10.1038/cr.2016.101 pmid: 27573176 |
[45] |
Zhan Y, Sun X, Li B, et al. Establishment of a PRKAG2 cardiac syndrome disease model and mechanism study using human induced pluripotent stem cells[J]. J Mol Cell Cardiol, 2018, 117: 49-61.
doi: S0022-2828(18)30041-5 pmid: 29452156 |
[46] | Argiro A, Bui Q, Hong KN, et al. Applications of gene therapy in cardiomyopathies[J]. JACC Heart Fail, 2024, 12: 248-260. |
[1] | LIU Lianshuang, FU Lijun, MIU Yan, CHEN Hao, HUANG Meirong, WU Jinjin, GUO Ying, LIU Tingliang, SHEN Jie, LI Fen. Application value of peripheral blood smear in screening and diagnosis of infantile-onset Pompe disease [J]. Journal of Clinical Pediatrics, 2019, 37(7): 503-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 229
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 233
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|