Journal of Clinical Pediatrics ›› 2022, Vol. 40 ›› Issue (8): 634-640.doi: 10.12372/jcp.2022.21e1322
• Continuing Medical Education • Previous Articles
ZHANG Haiqing1,2, CHEN Yanping1, ZHANG Jin1
Received:
2021-09-13
Online:
2022-08-15
Published:
2022-08-09
ZHANG Haiqing, CHEN Yanping, ZHANG Jin. Research progress of Mycoplasma pneumoniae vaccine[J].Journal of Clinical Pediatrics, 2022, 40(8): 634-640.
[1] | Nakane D, Kenri T, Matsuo L, et al. Systematic structural analyses of attachment organelle in Mycoplasma pneumoniae[J]. PLoS Pathog, 2015, 11(12): e1005299. |
[2] | Guo DX, Hu WJ, Wei R, et al. Epidemiology and mechanism of drug resistance of Mycoplasma pneumoniae in Beijing, China: a multicenter study[J]. Bosn J Basic Med Sci, 2019, 19(3): 288-296. |
[3] |
Qu J, Chen S, Bao F, et al. Molecular characterization and analysis of Mycoplasma pneumoniae among patients of all ages with community-acquired pneumonia during an epidemic in China[J]. Int J Infect Dis, 2019, 83: 26-31.
doi: 10.1016/j.ijid.2019.03.028 |
[4] |
Zhao F, Li J, Liu J, et al. Antimicrobial susceptibility and molecular characteristics of Mycoplasma pneumoniae isolates across different regions of China[J]. Antimicrob Resist Infect Control, 2019, 8: 143.
doi: 10.1186/s13756-019-0576-5 |
[5] |
Somes MP, Turner RM, Dwyer LJ, et al. Estimating the annual attack rate of seasonal influenza among unvaccinated individuals: a systematic review and meta-analysis[J]. Vaccine, 2018, 36(23): 3199-3207..
doi: 10.1016/j.vaccine.2018.04.063 |
[6] |
Yu Q, Li X, Fan M, et al. The impact of childhood pneumococcal conjugate vaccine immunisation on all-cause pneumonia admissions in Hong Kong: a 14-year population-based interrupted time series analysis[J]. Vaccine, 2021, 39(19): 2628-2635.
doi: 10.1016/j.vaccine.2021.03.090 |
[7] |
Prentice S, Nassanga B, Webb EL, et al. BCG-induced non-specific effects on heterologous infectious disease in Ugandan neonates: an investigator-blind randomised controlled trial[J]. Lancet Infect Dis, 2021, 21(7): 993-1003.
doi: 10.1016/S1473-3099(20)30653-8 pmid: 33609457 |
[8] |
Linchevski I, Klement E, Nir-Paz R. Mycoplasma pneumoniae vaccine protective efficacy and adverse reactions--systematic review and meta-analysis[J]. Vaccine, 2009, 27(18): 2437-2446.
doi: 10.1016/j.vaccine.2009.01.135 pmid: 19368785 |
[9] |
Smith CB, Friedewald WT, Chanock RM. Inactivated Mycoplasma pneumoniae vaccine. Evaluation in volunteers[J]. JAMA, 1967, 199(6): 353-358.
doi: 10.1001/jama.1967.03120060051007 |
[10] |
Unni PA, Ali AMMT, Rout M, et al. Designing of an epitope-based peptide vaccine against walking pneumonia: an immunoinformatics approach[J]. Mol Biol Rep, 2019, 46(1): 511-527.
doi: 10.1007/s11033-018-4505-0 |
[11] |
Rodman Berlot J, Krivec U, Mrvič T, et al. Mycoplasma pneumoniae P 1 genotype indicates severity of lower respiratory tract infections in children[J]. J Clin Microbiol, 2021, 59(8): e0022021.
doi: 10.1128/JCM.00220-21 |
[12] | Williams CR, Chen L, Sheppard ES, et al. Distinct Mycoplasma pneumoniae interactions with sulfated and sialylated receptors[J]. Infect Immun, 2020, 88(11): e00392-20. |
[13] |
Chaudhry R, Ghosh A, Chandolia A. Pathogenesis of Mycoplasma pneumoniae: an update[J]. Indian J Med Microbiol, 2016, 34(1): 7-16.
doi: 10.4103/0255-0857.174112 pmid: 26776112 |
[14] |
Widjaja M, Berry IJ, Jarocki VM, et al. Cell surface processing of the P1 adhesin of Mycoplasma pneumoniae identifies novel domains that bind host molecules[J]. Sci Rep, 2020, 10(1): 6384.
doi: 10.1038/s41598-020-63136-y |
[15] |
Chourasia BK, Chaudhry R, Malhotra P. Delineation of immunodominant and cytadherence segment(s) of Mycoplasma pneumoniae P1 gene[J]. BMC Microbiol, 2014, 14: 108.
doi: 10.1186/1471-2180-14-108 |
[16] |
Schurwanz N, Jacobs E, Dumke R. Strategy to create chimeric proteins derived from functional adhesin regions of Mycoplasma pneumoniae for vaccine development[J]. Infect immun, 2009, 77(11): 5007-5015.
doi: 10.1128/IAI.00268-09 pmid: 19667041 |
[17] | 贾飞勇, 梁东, 傅文永, 等. 肺炎支原体P1蛋白预防动物支原体肺炎的研究[J]. 中华儿科杂志, 2001, 39(5): 293-295. |
[18] |
Meng YL, Wang WM, Lv DD, et al. The effect of platycodin D on the expression of cytoadherence proteins P1 and P30 in Mycoplasma pneumoniae models[J]. Environ Toxicol Pharmacol, 2017, 49: 188-193.
doi: 10.1016/j.etap.2017.01.001 |
[19] |
Kenri T, Kawakita Y, Kudo H, et al. Production and characterization of recombinant P1 adhesin essential for adhesion, gliding, and antigenic variation in the human pathogenic bacterium, Mycoplasma pneumoniae[J]. Biochem Biophys Res Commun, 2019, 508(4): 1050-1055.
doi: 10.1016/j.bbrc.2018.11.132 |
[20] |
Drasbek M, Christiansen G, Drasbek KR, et al. Interaction between the P1 protein of Mycoplasma pneumoniae and receptors on HEp-2 cells[J]. Microbiology (Reading), 2007, 153(Pt 11): 3791-3799.
doi: 10.1099/mic.0.2007/010736-0 |
[21] | 朱翠明, 汪世平, 吴移谋, 等. 肺炎支原体P1蛋白片段免疫学活性及黏附功能的研究[J]. 中华微生物学和免疫学杂志, 2012, 32(8): 706-710. |
[22] |
Varshney AK, Chaudhry R, Kabra SK, et al. Cloning, expression, and immunological characterization of the P30 protein of Mycoplasma pneumoniae[J]. Clin vaccine immunol, 2008, 15(2): 215-220.
doi: 10.1128/CVI.00283-07 pmid: 18032594 |
[23] |
Hausner M, Schamberger A, Naumann W, et al. Development of protective anti-Mycoplasma pneumoniae antibodies after immunization of guinea pigs with the combination of a P1-P30 chimeric recombinant protein and chitosan[J]. Microb Pathog, 2013, 64: 23-32.
doi: 10.1016/j.micpath.2013.07.004 |
[24] |
Tabassum I, Chaudhry R, Chourasia BK, et al. Identification of an N-terminal 27 kDa fragment of Mycoplasma pneumoniae P116 protein as specific immunogen in M. pneumoniae infections[J]. BMC Infect Dis, 2010, 10: 350.
doi: 10.1186/1471-2334-10-350 pmid: 21144026 |
[25] |
Svenstrup HF, Nielsen PK, Drasbek M, et al. Adhesion and inhibition assay of Mycoplasma genitalium and M. pneumoniae by immunofluorescence microscopy[J]. J Med Microbiol, 2002, 51(5): 361-373.
doi: 10.1099/0022-1317-51-5-361 pmid: 11990488 |
[26] |
Vizarraga D, Kawamoto A, Matsumoto U, et al. Immunodominant proteins P1 and P40/P90 from human pathogen Mycoplasma pneumoniae[J]. Nat Commun, 2020, 11(1): 5188.
doi: 10.1038/s41467-020-18777-y pmid: 33057023 |
[27] |
Chen C, Yong Q, Jun G, et al. Designing, expression and immunological characterization of a chimeric protein of Mycoplasma pneumoniae[J]. Protein Pept Lett, 2016, 23(7): 592-596.
doi: 10.2174/0929866523666160502155414 |
[28] |
Chen Y, Wu Y, Qin L, et al. T-B cell epitope peptides induce protective immunity against Mycoplasma pneumoniae respiratory tract infection in BALB/c mice[J]. Immunobiology, 2021, 226(3): 152077.
doi: 10.1016/j.imbio.2021.152077 |
[29] |
Vilela Rodrigues TC, Jaiswal AK, de Sarom A, et al. Reverse vaccinology and subtractive genomics reveal new therapeutic targets against Mycoplasma pneumoniae: a causative agent of pneumonia[J]. R Soc Open Sci, 2019, 6(7): 190907.
doi: 10.1098/rsos.190907 |
[30] | Ramasamy K, Balasubramanian S, Manickam K, et al. Mycoplasma pneumoniae community-acquired respiratory distress syndrome toxin uses a novel KELED sequence for retrograde transport and subsequent cytotoxicity[J]. mBio, 2018, 9(1): e01663-17. |
[31] | Balasubramanian S, Pandranki L, Maupin S, et al. Disulfide bond of Mycoplasma pneumoniae community-acquired respiratory distress syndrome toxin is essential to maintain the ADP-ribosylating and vacuolating activities[J]. Cell Microbiol, 2019, 21(8): e13032. |
[32] |
Kannan TR, Baseman JB. ADP-ribosylating and vacuolating cytotoxin of Mycoplasma pneumoniae represents unique virulence determinant among bacterial pathogens[J]. Proc Natl Acad Sci U S A, 2006, 103(17): 6724-6729.
doi: 10.1073/pnas.0510644103 pmid: 16617115 |
[33] |
Medina JL, Brooks EG, Chaparro A, et al. Mycoplasma pneumoniae CARDS toxin elicits a functional IgE response in Balb/c mice[J]. PLoS One, 2017, 12(2): e0172447.
doi: 10.1371/journal.pone.0172447 |
[34] |
Zhu C, Wang S, Hu S, et al. Protective efficacy of a Mycoplasma pneumoniae P1C DNA vaccine fused with the B subunit of Escherichia coli heat-labile enterotoxin[J]. Can J Microbiol, 2012, 58(6): 802-810.
doi: 10.1139/w2012-051 |
[35] |
Lin L, Qiao M, Zhang X, et al. Site-selective reactions for the synthesis of glycoconjugates in polysaccharide vaccine development[J]. Carbohydr Polym, 2020, 230: 115643.
doi: 10.1016/j.carbpol.2019.115643 |
[36] |
Brunner H. Protective efficacy of Mycoplasma pneumoniae polysaccharides[J]. Isr J Med Sci, 1981, 17(7): 678-681.
pmid: 6793538 |
[37] |
Razin S, Prescott B, Chanock RM. Immunogenicity of Mycoplasma pneumoniae glycolipids: a novel approach to the production of antisera to membrane lipids[J]. Proc Natl Acad Sci U S A, 1970, 67(2): 590-597.
pmid: 4943173 |
[38] | Meyer Sauteur PM, Graça C, et al. Antibodies to protein but not glycolipid structures are important for host defense against Mycoplasma pneumoniae[J]. Infect Immun, 2019, 87(2): e00663-18. |
[39] |
Jiang MJ, Liu S J, Su L, et al. Intranasal vaccination with Listeria ivanovii as vector of Mycobacterium tuberculosis antigens promotes specific lung-localized cellular and humoral immune responses[J]. Sci Rep, 2020, 10(1): 302.
doi: 10.1038/s41598-019-57245-6 |
[40] |
Mahdy SE, Sijing L, Lin S, et al. Development of a recombinant vaccine against foot and mouth disease utilizing mutant attenuated Listeria ivanovii strain as a live vector[J]. J Virol Methods, 2019, 273: 113722.
doi: 10.1016/j.jviromet.2019.113722 |
[41] |
Gerlach T, Elbahesh H, Saletti G, et al. Recombinant influenza A viruses as vaccine vectors[J]. Expert Rev Vaccines, 2019, 18(4): 379-392.
doi: 10.1080/14760584.2019.1582338 pmid: 30777467 |
[42] |
Mara AB, Gavitt TD, Tulman ER, et al. Lipid moieties of Mycoplasma pneumoniae lipoproteins are the causative factor of vaccine-enhanced disease[J]. NPJ Vaccines, 2020, 5(1): 31.
doi: 10.1038/s41541-020-0181-x |
[1] | GAO Longfei, ZHANG Jingli, WU Xiaojie, WU Huifang, DUAN Chenchu, KANG Juncong, ZHANG Zhongping. Predictive role of IL-17A in refractory Mycoplasma pneumoniae pneumonia in children [J]. Journal of Clinical Pediatrics, 2023, 41(5): 366-369. |
[2] | GUO Fang, KANG Lei, DU Feifan, JIA Yanhong, XU Meixian. Myelin oligodendrocyte glycoprotein antibody-associated disease in children with prominent manifestation of optic neuritis caused by Mycoplasma pneumoniae infection: a case report [J]. Journal of Clinical Pediatrics, 2023, 41(10): 703-707. |
[3] | LIU Feng. Clinical indicators related to prognosis of Mycoplasma pneumoniae pneumonia [J]. Journal of Clinical Pediatrics, 2022, 40(4): 247-251. |
|