Journal of Clinical Pediatrics ›› 2023, Vol. 41 ›› Issue (9): 650-655.doi: 10.12372/jcp.2023.23e0540
• Expert Review • Previous Articles Next Articles
JI Taoyun
Received:
2023-06-20
Published:
2023-09-15
Online:
2023-09-05
JI Taoyun. Prospect of gene therapy for developmental and epileptic encephalopathy[J].Journal of Clinical Pediatrics, 2023, 41(9): 650-655.
"
编码蛋白功能 | 致病基因 |
---|---|
离子通道 | SCN1A、SCN1B、SCN2A、SCN3A、SCN8A、KCNA2、KCNB1、KCNC2、KCNQ2、KCNT1、KCNT2、CACNA1A、CACNA1E、GABRA1、GABRA2、GABRA5、GABRB1、GABRB2、GABRB3、GABRG2、GABBR2、FRRS1L、GRIN1、GRIN2B、GRIN2D |
膜运输调节 | STX1B、STXBP1、CPLX1、NSF、SLC1A2、AP3B2、NAPB |
转运蛋白 | SLC25A22、SLC25A12、SLC38A3、SLC13A5、SLC12A5、ATP6V1A、ATP1A2、ATP1A3、ATP6V0A1、SLC35A2 |
细胞骨架蛋白 | SPTAN1、ACTL6B |
细胞代谢及信号转导 | ARX、WWOX、FGF12、FGF13、DMXL2、SZT2、NTRK2、YWHAG |
细胞黏附分子 | PCDH19 |
[1] |
Palmer EE, Howell K, Scheffer IE. Natural history studies and clinical trial readiness for genetic developmental andepileptic encephalopathies[J]. Neurotherapeutics, 2021, 18(3): 1432-1444.
doi: 10.1007/s13311-021-01133-3 |
[2] |
Ware TL, Huskins SR, Grinton BE, et al. Epidemiology and etiology of infantile developmental and epileptic encephalopathies in Tasmania[J]. Epilepsia Open, 2019, 4(3): 504-510.
doi: 10.1002/epi4.12350 pmid: 31440733 |
[3] |
Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology[J]. Epilepsia, 2017, 58(4): 512-521.
doi: 10.1111/epi.13709 pmid: 28276062 |
[4] |
Zuberi SM, Wirrell E, Yozawitz E, et al. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: position statement by the ILAE Task Force on Nosology and Definitions[J]. Epilepsia, 2022, 63(6): 1349-1397.
doi: 10.1111/epi.17239 pmid: 35503712 |
[5] |
Glasscock E, Qian J, Yoo JW, et al. Masking epilepsy by combining two epilepsy genes[J]. Nat Neurosci, 2007, 10: 1554-1558.
pmid: 17982453 |
[6] |
Mefford HC, Yendle SC, Hsu C, et al. Rare copy number variants are an important cause of epileptic encephalopathies[J]. Ann Neurol, 2011, 70(6): 974-985.
doi: 10.1002/ana.22645 pmid: 22190369 |
[7] |
Ma Y, Chen C, Wang Y, et al. Analysis copy number variation of Chinese children in early-onset epileptic encephalopathies with unknown cause: CNVs analysis in EOEEs[J]. Clin Genet, 2016, 90(5): 428-436.
doi: 10.1111/cge.12768 pmid: 26925868 |
[8] |
Myers CT, Hollingsworth G, Muir AM, et al. Parental mosaicism in “de novo” epileptic encephalopathies[J]. N Engl J Med, 2018, 378: 1646-1648.
doi: 10.1056/NEJMc1714579 |
[9] |
de Lange IM, Koudijs MJ, van ’t Slot R, et al. Assessment of parental mosaicism in SCN1A-related epilepsy by single-molecule molecular inversion probes and next-generation sequencing[J]. J Med Genet, 2018, 56: 75-80.
doi: 10.1136/jmedgenet-2018-105672 |
[10] |
Carvill GL, Engel KL, Ramamurthy A, et al. Aberrant inclusion of a poison exon causes Dravet syndrome and related SCN1A-associated genetic epilepsies[J]. Am J Hum Genet, 2018, 103(6): 1022-1029.
doi: S0002-9297(18)30399-9 pmid: 30526861 |
[11] |
Winawer MR, Griffin NG, Samanamud J, et al. Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy[J]. Ann Neurol, 2018, 83(6): 1133-1146.
doi: 10.1002/ana.v83.6 |
[12] |
Lee JH, Huynh M, Silhavy JL, et al. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly[J]. Nat Genet, 2012, 44(8): 941-945.
doi: 10.1038/ng.2329 |
[13] |
Sim NS, Seo Y, Lim JS, et al. Brain somatic mutations in SLC35A2 cause intractable epilepsy with aberrant N-glycosylation[J]. Neurol Genet, 2018, 4(6): e294.
doi: 10.1212/NXG.0000000000000294 |
[14] |
Ye Z, Chatterton Z, Pflueger J, et al. Cerebrospinal fluid liquid biopsy for detecting somatic mosaicism in brain[J]. Brain Commun, 2021, 3(1): fcaa235.
doi: 10.1093/braincomms/fcaa235 |
[15] |
Kim S, Baldassari S, Sim NS, et al. Detection of brain somatic mutations in cerebrospinal fluid from refractory epilepsy patients[J]. Ann Neurol, 2021, 89(6): 1248-1252.
doi: 10.1002/ana.v89.6 |
[16] |
Guerrini R, Conti V, Mantegazza M, et al. Developmental and epileptic encephalopathies: from genetic heterogeneity to phenotypic continuum[J]. Physiol Rev, 2023, 103(1): 433-513.
doi: 10.1152/physrev.00063.2021 |
[17] |
Hasan S, Balobaid A, Grottesi A, et al. Lethal digenic mutations in the K1 channels Kir4.1 (KCNJ10) and SLACK (KCNT1) associated with severe-disabling seizures and neurodevelopmental delay[J]. J Neurophysiol, 2017, 118: 2402-2411.
doi: 10.1152/jn.00284.2017 |
[18] |
Lado FA, Rubboli G, Capovilla G, et al. Pathophysiology of epileptic encephalopathies[J]. Epilepsia, 2013, 54: 6-13.
doi: 10.1111/epi.2013.54.issue-s8 |
[19] |
Scharfman HE. The neurobiology of epilepsy[J]. Curr Neurol Neurosci Rep, 2007, 7: 348-354.
doi: 10.1007/s11910-007-0053-z |
[20] |
Galanopoulou AS, Moshe SL. In search of epilepsy biomarkers in the immature brain: goals, challenges and strategies[J]. Biomark Med, 2011, 5: 615-628.
doi: 10.2217/bmm.11.71 pmid: 22003910 |
[21] |
Haas KZ, Sperber EF, Opanashuk LA, et al. Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling[J]. Hippocampus, 2001, 11: 615-625.
pmid: 11811655 |
[22] |
Yu FH, Mantegazza M, Westenbroek RE, et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy[J]. Nat Neurosci, 2006, 9: 1142-1149.
pmid: 16921370 |
[23] |
Ogiwara I, Miyamoto H, Morita N, et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an SCN1A gene mutation[J]. J Neurosci, 2007, 27: 5903-5914.
doi: 10.1523/JNEUROSCI.5270-06.2007 pmid: 17537961 |
[24] |
Ito S, Ogiwara I, Yamada K, et al. Mouse with Nav1.1 haploinsufficiency, a model for Dravet syndrome, exhibits lowered sociability and learning impairment[J]. Neurobiol Dis, 2013, 49: 29-40.
doi: 10.1016/j.nbd.2012.08.003 pmid: 22986304 |
[25] | Mantegazza M, Broccoli V. SCN1A/NaV1.1 channel-opathies: mechanisms in expression systems, animal models, and human iPSC models[J]. Epilepsia, 2019, 60: S25-S38. |
[26] |
Mantegazza M, Cestèle S. Pathophysiological mechanisms of migraine and epilepsy: similarities and differences[J]. Neurosci Lett, 2018, 667: 92-102
doi: S0304-3940(17)30923-0 pmid: 29129678 |
[27] |
Prontera P, Sarchielli P, Caproni S, et al. Epilepsy in hemiplegic migraine: genetic mutations and clinical implications[J]. Cephalalgia, 2018, 38:361-173.
doi: 10.1177/0333102416686347 pmid: 28058944 |
[28] |
Salgueiro-Pereira AR, Duprat F, Pousinha PA, et al. A two-hitstory: seizures and genetic mutation interaction sets phenotype severity in SCN1A epilepsies[J]. Neurobiol Dis, 2019, 125: 31-44.
doi: S0969-9961(19)30012-9 pmid: 30659983 |
[29] | Gardella E, Marini C, Trivisano M, et al. The phenotype of SCN8A developmental and epileptic encephalopathy[J]. Neurology, 2018, 91: e1112-e1124. |
[30] |
Johannesen KM, Liu Y, Koko M, et al. Genotype-phenotype correlations in SCN8A-related disorders reveal prognostic and therapeutic implications[J]. Brain, 2022, 145: 2991-3009.
doi: 10.1093/brain/awab321 |
[31] |
Liu Y, Schubert J, Sonnenberg L, et al. Neuronal mechanisms of mutations in SCN8A causing epilepsy or intellectual disability[J]. Brain, 2019, 142: 376-390.
doi: 10.1093/brain/awy326 |
[32] |
Wagnon JL, Barker BS, Ottolini M, et al. Loss-of-function variants of SCN8A in intellectual disability without seizures[J]. Neurol Genet, 2017, 3: e170.
doi: 10.1212/NXG.0000000000000170 |
[33] |
Boerma RS, Braun KP, van den Broek MP, et al. Remarkable phenytoin sensitivity in 4 children with SCN8A related epilepsy: a molecular neuropharmacological approach[J]. Neurotherapeutics, 2016, 13: 192-197.
doi: 10.1007/s13311-015-0372-8 pmid: 26252990 |
[34] |
Du J, Simmons S, Brunklaus A, et al. Differential excitatory vs inhibitory SCN expression at single cell level regulates brain sodium channel function in neurodevelopmental disorders[J]. Eur J Paediatr Neurol, 2020, 24: 129-133.
doi: 10.1016/j.ejpn.2019.12.019 |
[35] |
Stamberger H, Nikanorova M, Willemsen MH, et al. STXBP1 encephalopathy: a neurodevelopmental disorder including epilepsy[J]. Neurology, 2016, 86: 954-962.
doi: 10.1212/WNL.0000000000002457 pmid: 26865513 |
[36] |
Tanenhaus A, Stowe T, Young A, et al. Cell-selective adeno-associated virus-mediated SCN1A gene regulation therapy rescues mortality and seizure phenotypes in a Dravet syndrome mouse model and is well tolerated in nonhuman primates[J]. Hum Gene Ther, 2022, 33(11-12): 579-597.
doi: 10.1089/hum.2022.037 pmid: 35435735 |
[37] |
Prabhakar S, Cheah PS, Zhang X, et al. Long-term therapeutic efficacy of intravenous AAV-mediated hamartin replacement in mouse model of tuberous sclerosis type 1[J]. Mol Ther Methods Clin Dev, 2019, 15:18-26.
doi: 10.1016/j.omtm.2019.08.003 |
[38] |
Gao Y, Irvine EE, Eleftheriadou I, et al. Gene replacement ameliorates deficits in mouse and human models of cyclin-dependent kinase-like 5 disorder[J]. Brain, 2020, 143(3): 811-832.
doi: 10.1093/brain/awaa028 pmid: 32125365 |
[39] |
Doxakis E. Therapeutic antisense oligonucleotides for movement disorders[J]. Med Res Rev, 2021, 41(5): 2656-2688.
doi: 10.1002/med.v41.5 |
[40] |
Lenk GM, Jafar-Nejad P, Hill SF, et al. Scn8a antisense oligonucleotide is protective in mouse models of SCN8A encephalopathy and Dravet syndrome[J]. Ann Neurol, 2020, 87(3): 339-346.
doi: 10.1002/ana.25676 pmid: 31943325 |
[41] |
Han Z, Chen C, Christiansen A, et al. Antisense oligonucleotides increase SCN1A expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome[J]. Sci Transl Med, 2020, 12: eaaz6100.
doi: 10.1126/scitranslmed.aaz6100 |
[42] |
Wengert ER, Wagley PK, Strohm SM, et al. Targeted augmentation of nuclear gene output (TANGO) of SCN1A rescues parvalbumin interneuron excitability and reduces seizures in a mouse model of Dravet syndrome[J]. Brain Res, 2022, 1775: 147743.
doi: 10.1016/j.brainres.2021.147743 |
[43] | ClinicalTrials.gov. NCT04442295. An open-label study to investigate the safety of single and multiple ascending doses of STK-001 in children and adolescents with Dravet syndrome [DB/OL]. [2023-03-08]. Bethesda, MD, USA: U.S. National Library of Medicine, 2022. https://www.clinicaltrials.gov/ct2/show/record/NCT04442295. |
[44] |
Guerrini R, Balestrini S, Wirrell EC, et al. Monogenic epilepsies: disease mechanisms, clinical phenotypes, and targeted therapies[J]. Neurology, 2021, 97(17): 817-831.
doi: 10.1212/WNL.0000000000012744 pmid: 34493617 |
[45] |
Turner TJ, Zourray C, Schorge S, et al. Recent advances in gene therapy for neurodevelopmental disorders with epilepsy[J]. J Neurochem, 2021, 157(2): 229-262.
doi: 10.1111/jnc.v157.2 |
[1] | LIU Qingyu, WANG Liwei, LIN Yilin, XIAO Rui, ZHOU Hui, ZHANG Xiaoqian, FU Mengran, MI Hongying. Genetic variation analysis of neonatal hyperbilirubinemia: a single-center retrospective study [J]. Journal of Clinical Pediatrics, 2024, 42(9): 782-786. |
[2] | WU Qin, PAN Hairui, MA Panpan, WANG Yupei, ZHOU Bingbo, ZHENG Lei, TIAN Xinyuan, HUI Ling, HAO Shengju, SUN Bo, ZHANG Chuan, GUO Jinxian. Genetic analysis of 11 patients with congenital adrenal cortical abnormalities in a single center [J]. Journal of Clinical Pediatrics, 2024, 42(8): 691-696. |
[3] | CHAI Xingyuan, ZHANG Zhiyong, ZHAO Xiaodong. Progress in radical treatment of X-linked severe combined immunodeficiency [J]. Journal of Clinical Pediatrics, 2024, 42(7): 659-662. |
[4] | LI Qiang, CHEN Chi, ZHOU Ying, MAO Huaqing, XU Yihong, XU Yanhua. Analysis of the effect of optimized quality control system and evaluation indicators on the screening efficiency of neonatal genetic metabolic diseases [J]. Journal of Clinical Pediatrics, 2024, 42(6): 515-519. |
[5] | ZHOU Wenhao. The China Neonatal Genome Project: towards a new future in the treatment of genetic diseases [J]. Journal of Clinical Pediatrics, 2024, 42(5): 379-383. |
[6] | WANG Ruifang, LIANG Lili, ZHANG Kaichuang, YANG Yi, SUN Yuning, SUN Manqing, XIAO Bing, HAN Lianshu, ZHANG Huiwen, GU Xuefan, YU Yongguo, QIU Wenjuan. Clinical characteristics and genetic variation analysis of Shwachman-Diamond syndrome in seven children [J]. Journal of Clinical Pediatrics, 2024, 42(3): 230-237. |
[7] | CHEN Guoqing, ZHANG Huiwen. Gene therapy for mucopolysaccharidosis type Ⅱ [J]. Journal of Clinical Pediatrics, 2024, 42(3): 270-276. |
[8] | ZHANG Xiaoli, WANG Mengyue, ZHANG Chenyu, LI Jialin, MA Yichao, WANG Junling, LI Xiaoli, HAN Rui, XU Dan, JIA Tianming. Clinical Features And Genetic Characteristics Of Epilepsy Associated With CHD2 Gene Variants [J]. Journal of Clinical Pediatrics, 2024, 42(2): 121-126. |
[9] | JIN Yuyu, LUO Feihong. New advances in the study of cartilage extracellular matrix gene regulation and genetic defects [J]. Journal of Clinical Pediatrics, 2024, 42(2): 164-170. |
[10] | Reviewer: DING Yi, YU Yue, Reviser: HAN Lianshu. Research progress in gene therapy for MUT-type methylmalonic acidemia [J]. Journal of Clinical Pediatrics, 2024, 42(12): 1051-1055. |
[11] | XIA Qin, GU Qin, CHEN Ting, ZHANG Hewei, HUO Hongliang, CAO Xujun, WANG Weiwei, JI Yongchun. Clinical analysis and follow-up of rehabilitation training of X-linked intellectual disability caused by DDX3X gene variation: a report of three cases [J]. Journal of Clinical Pediatrics, 2024, 42(11): 948-954. |
[12] | GUO Caiqin, ZHAO Li, XIAO Jianping, YANG Lan, TANG Ye, LIU Jun, ZHAO Xin. Prenatal diagnosis, genetic counseling and follow-up of fetuses with isodicentric Y chromosomes [J]. Journal of Clinical Pediatrics, 2024, 42(1): 46-52. |
[13] | TANG Yanan, YE Xiantao, GU Xuefan, YU Yongguo, XIAO Bing, SUN Yu. Clinical characteristics and genetic analysis in Chinese patients with Menke-Hennekam syndrome [J]. Journal of Clinical Pediatrics, 2023, 41(8): 613-617. |
[14] | ZHANG Yinchun, MO Wenhui, BAI Bo, CHEN Jinmian, SHI Congcong, GU Xia, XIAO Xin, HAO Hu. Genetic screening and early intervention in neonatal hyperammonemia caused by urea cycle disorder [J]. Journal of Clinical Pediatrics, 2023, 41(4): 259-265. |
[15] | XI Bixin, HU Qun, LIU Aiguo. Advances in the gene therapy for Fanconi anemia [J]. Journal of Clinical Pediatrics, 2023, 41(2): 156-160. |
|