Journal of Clinical Pediatrics ›› 2025, Vol. 43 ›› Issue (9): 670-679.doi: 10.12372/jcp.2025.25e0179
• Original Article • Previous Articles Next Articles
ZENG Shicheng, FENG Kun, ZHOU Xianlu, HUA Ziyu()
Received:
2025-03-03
Accepted:
2025-05-07
Published:
2025-09-15
Online:
2025-08-27
CLC Number:
ZENG Shicheng, FENG Kun, ZHOU Xianlu, HUA Ziyu. International comparison of disease burden of neonatal sepsis (1990-2021) and implications for China[J].Journal of Clinical Pediatrics, 2025, 43(9): 670-679.
Table 1
The population of NS of the prevalence,incidence and deaths in global, America, China and India in 1990 and 2021"
项目 | 1990年 | 2021年 | |||||
---|---|---|---|---|---|---|---|
患病例数 | 发病例数 | 死亡例数 | 患病例数 | 发病例数 | 死亡例数 | ||
全球 | 5 187 533.56 | 5 046 389.04 | 304 045.32 | 9 661 523.48 | 3 880 833.92 | 232 656.28 | |
美国 | 女性 | 53 876.06 | 16 252.20 | 419.88 | 53 017.01 | 10 888.41 | 295.02 |
男性 | 61 038.08 | 21 239.96 | 523.12 | 61 772.97 | 14 434.90 | 381.40 | |
合计 | 114 914.13 | 37 492.16 | 943.00 | 114 789.99 | 25 323.31 | 676.43 | |
中国 | 女性 | 195 921.32 | 100 817.14 | 2 837.51 | 235 273.93 | 30 255.82 | 505.92 |
男性 | 298 338.41 | 187 697.05 | 5 198.13 | 382 036.88 | 59 099.70 | 820.14 | |
合计 | 494 259.72 | 288 514.18 | 8 035.64 | 617 310.81 | 89 355.52 | 1 326.06 | |
印度 | 女性 | 267 778.59 | 396 441.52 | 28 617.29 | 795 717.26 | 253 683.94 | 15 313.45 |
男性 | 696 800.54 | 957 359.10 | 31 370.55 | 1 820 842.40 | 604 572.48 | 17 660.23 | |
合计 | 964 579.14 | 1 353 800.62 | 59 987.84 | 2 616 559.66 | 858 256.42 | 32 973.68 |
Table 2
The rate of change of ASPR of NS in global, America, China and India in 1990 and 2021"
项目 | 1990年 | 2021年 | 变化率/% | |||
---|---|---|---|---|---|---|
ASPR(/10万) | 95%UI | ASPR(/10万) | 95%UI | |||
全球 | 93.55 | 62.62~138.38 | 125.86 | 97.03~156.32 | 34.5 | |
美国 | 女性 | 43.74 | 27.63~66.11 | 34.32 | 26.41~42.79 | -21.5 |
男性 | 50.44 | 32.14~76.87 | 41.06 | 31.73~51.43 | -18.6 | |
合计 | 47.14 | 29.99~71.46 | 37.72 | 29.06~47.19 | -20.0 | |
中国 | 女性 | 33.99 | 21.88~51.09 | 35.99 | 27.62~45.17 | 5.9 |
男性 | 47.92 | 31.48~72.91 | 56.02 | 43.03~70.04 | 16.9 | |
合计 | 41.22 | 26.80~62.38 | 46.49 | 35.64~58.14 | 12.8 | |
印度 | 女性 | 59.92 | 38.73~85.58 | 115.65 | 88.81~143.05 | 93.0 |
男性 | 143.59 | 91.25~206.32 | 248.89 | 192.32~310.08 | 73.3 | |
合计 | 103.42 | 66.05~148.1 | 184.33 | 142.18~228.91 | 78.2 |
Table 3
The rate of change of ASIR of NS in global, America, China and India in 1990 and 2021"
项目 | 1990年 | 2021年 | 变化率/% | |||
---|---|---|---|---|---|---|
ASIR(/10万) | 95%UI | ASIR(/10万) | 95%UI | |||
全球 | 78.98 | 75.39~84.88 | 62.70 | 61.18~64.48 | -20.6 | |
美国 | 女性 | 16.60 | 15.82~17.66 | 12.54 | 12.08~12.98 | -24.5 |
男性 | 20.68 | 19.71~21.99 | 15.87 | 15.30~16.47 | -23.3 | |
合计 | 18.69 | 17.90~19.74 | 14.24 | 13.84~14.69 | -23.8 | |
中国 | 女性 | 19.61 | 18.48~21.11 | 12.28 | 11.83~12.71 | -37.4 |
男性 | 31.68 | 29.84~34.00 | 20.60 | 19.82~21.38 | -35.0 | |
合计 | 26.07 | 24.70~27.75 | 16.75 | 16.24~17.30 | -35.7 | |
印度 | 女性 | 68.82 | 64.94~73.79 | 50.88 | 48.76~53.28 | -26.1 |
男性 | 154.49 | 145.54~167.87 | 109.81 | 104.86~114.85 | -28.9 | |
合计 | 113.22 | 107.09~122.10 | 81.80 | 78.72~84.88 | -27.8 |
Table 4
The rate of change of ASDR of NS in global, America, China and India in 1990 and 2021"
项目 | 1990年 | 2021年 | 变化率/% | |||
---|---|---|---|---|---|---|
ASDR(/10万) | 95%UI | ASDR(/10万) | 95%UI | |||
全球 | 4.77 | 4.23~5.31 | 3.76 | 3.18~4.40 | -21.2 | |
美国 | 女性 | 0.43 | 0.41~0.44 | 0.34 | 0.30~0.37 | -20.9 |
男性 | 0.51 | 0.49~0.53 | 0.42 | 0.37~0.47 | -17.6 | |
合计 | 0.47 | 0.46~0.48 | 0.38 | 0.34~0.42 | -19.1 | |
中国 | 女性 | 0.55 | 0.44~0.67 | 0.20 | 0.14~0.26 | -63.6 |
男性 | 0.88 | 0.67~1.09 | 0.28 | 0.21~0.36 | -68.2 | |
合计 | 0.73 | 0.59~0.88 | 0.25 | 0.18~0.31 | -65.8 | |
印度 | 女性 | 4.97 | 4.02~6.19 | 3.07 | 2.24~4.15 | -38.2 |
男性 | 5.06 | 4.10~6.28 | 3.21 | 2.28~4.32 | -36.6 | |
合计 | 5.01 | 4.21~5.97 | 3.14 | 2.33~4.10 | -37.3 |
Table 5
AAPC of ASPR,ASIR and ASDR for NS in Global, America, China and India from 1990 to 2021 based on Joinpoint regression model"
全球 | 美国 | 中国 | 印度 | ||
---|---|---|---|---|---|
ASPR | AAPC | 0.99 | -0.72 | 0.40 | 1.87 |
95%CI | (0.85~1.14) | (-0.76~-0.67) | (0.30~0.50) | (1.83~1.92) | |
P值 | <0.01 | <0.01 | <0.01 | <0.01 | |
ASIR | AAPC | -0.73 | -0.87 | -1.43 | -1.04 |
95%CI | (-0.80~-0.65) | (-0.90~-0.84) | (-1.50~-1.37) | (-1.06~-1.02) | |
P值 | <0.01 | <0.01 | <0.01 | <0.01 | |
ASDR | AAPC | -0.76 | -0.41 | -3.46 | -1.46 |
95%CI | (-0.81~-0.73) | (-0.52~-0.31) | (-3.55~-3.39) | (-1.56~-1.39) | |
P值 | <0.01 | <0.01 | <0.01 | <0.01 |
[1] | Strunk T, Molloy E J, Mishra A, et al. Neonatal bacterial sepsis[J]. Lancet, 2024, 404(10449): 277-293. |
[2] | Celik IH, Hanna M, Canpolat FE, et al. Diagnosis of neonatal sepsis: the past, present and future[J]. Pediatr Res, 2022, 91(2): 337-350. |
[3] | Attia HMH, Parekh R, Dhandibhotla S, et al. Insight Into Neonatal Sepsis: An Overview[J]. Cureus, 2023, 15(9): e45530. |
[4] | Milton R, Gillespie D, Dyer C, et al. Neonatal sepsis and mortality in low-income and middle-income countries from a facility-based birth cohort: an international multisite prospective observational study[J]. Lancet Glob Health, 2022, 10(5): e661-e672. |
[5] |
Fang P, Gao K, Yang J, et al. Prevalence of multidrug-resistant pathogens causing neonatal early and late onset sepsis, a retrospective study from the tertiary referral children's hospital[J]. Infect Drug Resist, 2023, 16: 4213-4225.
doi: 10.2147/IDR.S416020 pmid: 37404253 |
[6] | Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet, 2024, 403(10440): 2133-2161. |
[7] |
Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet, 2024, 403(10440): 2162-2203.
doi: 10.1016/S0140-6736(24)00933-4 pmid: 38762324 |
[8] |
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950-2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021[J]. Lancet, 2024, 403(10440): 1989-2056.
doi: 10.1016/S0140-6736(24)00476-8 pmid: 38484753 |
[9] |
Kim HJ, Fay MP, Feuer EJ, et al. Permutation tests for joinpoint regression with applications to cancer rates[J]. Stat Med, 2000, 19(3): 335-351.
doi: 10.1002/(sici)1097-0258(20000215)19:3<335::aid-sim336>3.0.co;2-z pmid: 10649300 |
[10] | Wang X, Xiu R, Gong L, et al. Unraveling the global burden of inflammatory bowel disease (1990-2019): A Joinpoint regression analysis of divergent trends in 10-24 and 50-69 age cohorts[J]. Autoimmun Rev, 2024, 23(6): 103586. |
[11] |
Riebler A, Held L. Projecting the future burden of cancer: Bayesian age-period-cohort analysis with integrated nested Laplace approximations[J]. Biom J, 2017, 59(3): 531-549.
doi: 10.1002/bimj.201500263 pmid: 28139001 |
[12] | Cao G, Liu J, Liu M. Global, regional, and national incidence and mortality of neonatal preterm birth, 1990-2019[J]. JAMA Pediatr, 2022, 176(8): 787-796. |
[13] | Ryan L, Plötz FB, van den Hoogen A, et al. Neonates and COVID-19: state of the art : Neonatal Sepsis series[J]. Pediatr Res, 2022, 91(2): 432-439. |
[14] | Guo L, Han W, Su Y, et al. Perinatal risk factors for neonatal early-onset sepsis: a meta-analysis of observational studies[J]. J Matern Fetal Neonatal Med, 2023, 36(2): 2259049. |
[15] | Benitz WE, Achten NB. Technical assessment of the neonatal early-onset sepsis risk calculator[J]. Lancet Infect Dis, 2021, 21(5): e134-e140. |
[16] |
Achten NB, Klingenberg C, Benitz WE, et al. Association of use of the neonatal early-onset sepsis calculator with reduction in antibiotic therapy and safety: a systematic review and meta-analysis[J]. JAMA Pediatr, 2019, 173(11): 1032-1040.
doi: 10.1001/jamapediatrics.2019.2825 |
[17] | Prevention of Group B Streptococcal Early-Onset Disease in Newborns: ACOG Committee Opinion, Number 797[J]. Obstet Gynecol, 2020, 135(2): e51-e72. |
[18] | Giannoni E, Dimopoulou V, Klingenberg C, et al. Analysis of antibiotic exposure and early-onset neonatal sepsis in Europe, North America, and Australia[J]. JAMA Netw Open, 2022, 5(11): e2243691. |
[19] | Yu Y, Dong Q, Li S, et al. Etiology and clinical characteristics of neonatal sepsis in different medical setting models: A retrospective multi-center study[J]. Front Pediatr, 2022, 10: 1004750. |
[20] | Qiu Y, Yang J, Chen Y, et al. Microbiological profiles and antimicrobial resistance patterns of pediatric bloodstream pathogens in China, 2016-2018[J]. Eur J Clin Microbiol Infect Dis, 2021, 40(4): 739-749. |
[21] |
Dudeja S. Neonatal Sepsis: Treatment of neonatal sepsis in multidrug-resistant (MDR) infections: Part 2[J]. Indian J Pediatr, 2020, 87(2): 122-124.
doi: 10.1007/s12098-019-03152-7 pmid: 31900849 |
[22] |
Correction: Towards understanding global patterns of antimicrobial use and resistance in neonatal sepsis: insights from the NeoAMR network[J]. Arch Dis Child, 2020, 105(5): 519.
doi: 10.1136/archdischild-2019-316816corr1 pmid: 32220828 |
[23] |
Popescu CR, Cavanagh M, Tembo B, et al. Neonatal sepsis in low-income countries: epidemiology, diagnosis and prevention[J]. Expert Rev Anti Infect Ther, 2020, 18(5): 443-452.
doi: 10.1080/14787210.2020.1732818 pmid: 32070161 |
[24] | Batthula V, Somnath SH, Datta V. Reducing late-onset neonatal sepsis in very low birthweight neonates with central lines in a low-and-middle-income country setting[J]. BMJ Open Qual, 2021, 10(Suppl 1): e001353. |
[25] | Zhang HX, Zhao YY, Wang YQ. Analysis of the characteristics of pregnancy and delivery before and after implementation of the two-child policy[J]. Chin Med J (Engl), 2018, 131(1): 37-42. |
[26] | Ma Y, Hu M, Zafar Q. Analysis of the impact of external debt on health in an emerging Asian economy: Does FDI matter?[J]. Front Public Health, 2022, 10: 824073. |
[27] | Bang A, Deshmukh M, Baitule S, et al. Decline in the incidence of neonatal sepsis in rural gadchiroli, india during the twenty-one years (1998-2019) following the home-based neonatal care field-trial[J]. Pediatr Infect Dis J, 2021, 40(11): 1029-1033. |
[28] | Bang A, Baitule S, Deshmukh M, et al. Home-based management of neonatal sepsis: 23 years of sustained implementation and effectiveness in rural Gadchiroli, India, 1996-2019[J]. BMJ Glob Health, 2022, 7(9): e008469. |
[29] | Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet, 2024, 403(10440): 2100-2132. |
[1] | BIAN Zhaonan, ZHA Xinyi, ZHANG Xi, CHEN Xuting, CHEN Yanru, XU Min, ZHANG Yonghong, QIAN Jihong. Pathogenic characteristics of neonatal sepsis and influence factors of gram-negative bacterial infection: based on a 5-year retrospective clinical study [J]. Journal of Clinical Pediatrics, 2024, 42(3): 204-210. |
[2] | DAI Fangfang, YANG Juan, LIU Fengqin, GUO Chunyan, CHEN Xing. Household questionnaire survey on the prevalence and influencing factors of chronic cough in children in Shandong Province [J]. Journal of Clinical Pediatrics, 2023, 41(5): 370-375. |
[3] | MA Cuixia, Feng Lulu, Ma Qianqian, Li Yang, Feng Jizhen. Screening of newborns with hyperphenylalaninemia and analysis of PAH gene mutation and deletion [J]. Journal of Clinical Pediatrics, 2023, 41(2): 98-102. |
[4] | LI Pingping, HUANG Xuefei, HUANG Xuxu, et al. Application of modified sequential method in febrile neonates [J]. Journal of Clinical Pediatrics, 2019, 37(9): 641-. |
[5] | LU Jiangyi. Research progress in diagnosis of early-onset neonatal sepsis [J]. , 2015, 33(9): 822-. |
|