Journal of Clinical Pediatrics ›› 2022, Vol. 40 ›› Issue (2): 87-94.doi: 10.12372/jcp.2022.21e1618
• Expert Review • Previous Articles Next Articles
YANG Xiaoyan1,2, BIAN Qiuhan2, TUO Yuanyuan1,2, WANG Dinghuan2, HUANG Jing1,2
Received:
2021-11-22
Published:
2022-02-15
Online:
2022-02-11
YANG Xiaoyan, BIAN Qiuhan, TUO Yuanyuan, WANG Dinghuan, HUANG Jing. Inherited platelet function disorders: diagnosis, treatment and management[J].Journal of Clinical Pediatrics, 2022, 40(2): 87-94.
"
遗传疾病 | 基因位点 | 遗传方式 | 主要表现 |
---|---|---|---|
血小板大小正常的遗传性血小板减少症 | |||
先天性无巨核细胞性血小板减少症 | MPL | AR | 非常严重的血小板、巨核细胞减少;儿童期易进展为再生障碍性贫血;有严重出血倾向 |
THPO相关性血小板减少症 | THPO | AD/AR | 单等位基因变异表现为轻度血小板减少;双基因变异有 严重出血倾向 |
血小板减少伴尺桡骨发育 不良 | HOXA11 | AD | 严重的血小板减少、巨核细胞减少/缺失;儿童易进展为 再生障碍性贫血;桡骨和尺骨融合伴/不伴其他骨骼改变;感音性听力丧失;严重出血倾向 |
易患急性髓细胞白血病的 家族性血小板疾病 | RUNX1 | AD | 轻中度血小板减少;血小板颗粒缺乏;年轻时患急性髓母细胞白血病或骨髓增生异常综合征风险高(>40%); 患淋巴细胞白血病和实体瘤的风险高;无重度出血倾向 |
ANKRD26相关血小板 减少症 | ANKRD26 | AD | 轻中度血小板减少;有些患者血红蛋白和/或白细胞增多;大约10%的患者患有髓系肿瘤;无出血倾向 |
ETV6相关血小板减少症 | ETV6 | AD | 平均红细胞体积增大;血小板可能出现α颗粒功能异常;出现大量CD34+细胞;30%易患获得性淋巴、髓系 白细胞和骨髓增生综合征;无出血倾向 |
KZF5相关血小板减少症 | KZF5 | AD | 轻度至中度血小板减少;血小板的α和δ颗粒较少;无 出血倾向 |
Stormorken综合征 | STIM1ORAI1 | AD | 中度血小板减少;异常血栓形成;无精症、轻度贫血、 先天性瞳孔缩小;鱼鳞病、身材矮小、偏头痛和轻度认知障碍;轻度出血倾向 |
York血小板综合征 | STIM1 | AD | 比Stormorken综合征更罕见;中度至重度血小板减少; 血小板中α和δ颗粒较少;轻度出血倾向 |
遗传性血小板减少症伴大血小板 | |||
Bernard-Soulier综合征 | GP1BA、GP1BB、GP9 | AR | 中度至重度血小板减少和巨血小板;严重出血倾向 |
血小板型血管性血友病 | GP1BA | AD | 血小板减少伴低分子量血管性血友病因子多聚体 |
ITGA2B/ITGB3相关性 血小板减少症 | ITGA2B、ITGB3 | AD | 轻度至中度血小板减少;中度出血倾向 |
迪格奥尔格综合征 | TBX1/GP1BB | AD | 中度血小板减少;心脏异常、甲状旁腺和胸腺功能不全、 认知障碍;轻度至重度出血倾向 |
MYH9相关血小板减少症 | MYH9 | AD | 听力受损、肾病、肝病、白内障;无出血倾向 |
DIPAH1相关血小板减少症 | DIPAH1 | AD | 轻度血小板减少(偶尔血小板计数正常);低至中度感染 风险;早期感音性神经性耳聋;无出血倾向 |
SLFN14相关血小板减少症 | SLFN14 | AD | 轻度至中度血小板减少;δ颗粒分泌缺陷;未成熟血小板数量增加;中重度出血倾向 |
SRC相关血小板减少症 | SRC | AD | 轻度至重度血小板减少;血小板颗粒缺陷、骨髓纤维化和早期面部畸形;不成熟巨核细胞数量增多;轻度至重度出血倾向 |
TPM4相关血小板减少症 | TPM4 | AD | 轻度血小板减少;无出血倾向 |
Takenouchi-Kosaki综合征伴巨血小板减少 | CDC42 | AD | 中度血小板减少;智力、成长、精神和运动发育缺陷;大脑/面部/肌肉/骨骼异常;免疫缺陷、湿疹、听力/视力障碍、淋巴水肿和心脏或泌尿生殖系统畸形;无出血倾向 |
GNE相关血小板减少症 | GNE | AR | 严重血小板减少;一些患者患有孤立性血小板减少症; 轻度至重度出血倾向 |
ACTB相关血小板减少症 | ACTB | AD | 轻度至中度血小板减少;白细胞增多伴嗜酸性粒细胞增多、白细胞减少;小头畸形、轻微面部异常、发育迟缓、轻度智力残疾;无出血倾向 |
遗传性血小板减少症伴小血小板 | |||
Wiskott-Aldrich综合征 | WAS | XL | 严重血小板减少;免疫缺陷、湿疹、淋巴增生和自身免疫性疾病;严重出血倾向 |
FYB相关血小板减少症 | FYB | AR | 中度至重度血小板减少;αIIbβ3活化受损;轻度至中度出血倾向 |
ARCP1B相关血小板减少症 | ARCP1B | AR | 中度至重度血小板减少;某些情况下血小板计数正常; 嗜酸性粒细胞增多;免疫介导的炎症性疾病,湿疹,肝脾肿大;中度出血倾向 |
PTPRJ相关血小板减少症 | PTPRJ | AR | 中度至重度血小板减少;SRC型激酶激活缺陷;巨核细胞成熟缺陷;轻度至中度出血倾向 |
遗传性血小板颗粒缺陷 | |||
灰色血小板综合征 | NBEAL2/GFI1B | AR/AD | 轻至中度出血倾向;伴有大血小板、α颗粒减少或缺失的中度血小板减少症 |
Quebec综合征 | PLAU | AD | 中度血小板减少;血小板形态正常;检测α-颗粒蛋白缺陷;对抗纤溶药物有反应,但对血小板输注无反应 |
Hermansky-Pudlak综合征 | HPS | AR | 其特征为眼、皮肤白化病和血小板δ-颗粒缺陷,并伴有 血小板功能障碍,导致轻度至中度出血症状。诊断是通过临床发现皮肤、眼睛(有时是头发)色素减退,斜视或眼峡,以及血小板上致密小体缺失而确定 |
Chediak-Higashi综合征 | CHS | AR | 眼、皮肤白化病;有免疫缺陷易反复感染以及δ-颗粒缺陷;85%的病例发展为噬血细胞性淋巴组织细胞增多症; 轻度至中度出血倾向。明确诊断是基于CHS的分子遗传学检测 |
Griscelli综合征 | RAB27/MYO5A、 MLPH | AR | 正常血小板计数和形态;δ-颗粒缺陷;白化病,神经系统缺陷,NK细胞和T淋巴细胞的细胞毒性功能降低 |
血小板受体功能障碍 | |||
血小板无力症 | αIIbβ3 | AR | 正常血小板计数和形态;所有激动剂(ADP、TxA2、胶原、凝血酶)均缺乏或严重降低;流式细胞术显示αIIbβ3表达缺失或减少:Ⅰ型残余αIIbβ3<5%;II型残余αIIbβ3 5-20%;III型残余αIIbβ3 >20%;严重出血倾向 |
ADP受体缺乏 | P2Y12 | AD/AR | 正常血小板计数和形态;轻度至中度出血倾向 |
TXA2受体缺乏 | TxA2-R (TPα) | AD/AR | 正常血小板计数和形态;花生四烯酸或TxA2类似物缺乏或严重降低LTA;可伴有骨质疏松、复发性胃溃疡,无 出血症状或中至重度出血 |
GPVI胶原受体缺陷 | GPVI或GPIa/IIa | AR | 正常血小板计数和形态;GPⅥ缺乏症患者全血中胶原粘连减少,LTA胶原反应正常,不伴有出血或有轻至中度皮肤黏膜出血 |
"
治疗措施 | 临床疗效 |
---|---|
局部止血 | 可以改善鼻出血、外科手术出血、牙龈出血等 |
去氨加压素 | 可增加血小板的黏附和聚集,增强血小板促凝活性,缩短出血时间。对于颗粒分泌障碍、信号转导缺陷、MYH9相关血小板减少症等手术或分娩期间出血治疗有效。对于血小板无力症治疗效果欠佳 |
抗纤溶剂 | 可改善鼻出血、牙龈出血、月经过多,可预防小手术后出血 |
重组活化因子Ⅶ | 可增加凝血酶的生成、增强血小板的聚集以及血小板与细胞外基质的黏附功能。FDA批准用于治疗出血和血小板无力症的围手术期管理;Bernard-Soulier综合征患者手术期间出血的处理 |
雌激素 | 改善月经过多 |
输注血小板 | 中小型手术中出血的处理 |
造血干细胞移植 | 成功用于血小板无力症及Bernard-Soulier综合征患者 |
基因治疗 | 7例Wiskott-Aldrich综合征患者血液和免疫状况得到改善 |
[1] |
Bolton-Maggs PH, Chalmers EA, Collins PW, et al. A review of inherited platelet disorders with guidelines for their management on behalf of the UKHCDO[J]. Br J Haematol, 2006, 135(5):603-633.
doi: 10.1111/bjh.2006.135.issue-5 |
[2] | Mohan G, Malayala SV, Mehta P, et al. A comprehensive review of congenital platelet disorders, thrombocytopenias and thrombocytopathies[J]. Cureus, 2020, 312(10):e11275. |
[3] |
Dorgalaleh A, Tabibian S, Shamsizadeh M. Inherited platelet function disorders (IPFDs)[J]. Clin Lab, 2017, 63(1):1-13.
doi: 10.7754/Clin.Lab.2016.160607 pmid: 28164499 |
[4] |
Nava T, Rivard GE, Bonnefoy A. Challenges on the diagnostic approach of inherited platelet function disorders: Is a paradigm change necessary?[J]. Platelets, 2018, 29(2):148-155.
doi: 10.1080/09537104.2017.1356918 |
[5] |
Gresele P, Bury L, Falcinelli E. Inherited platelet function disorders: algorithms for phenotypic and genetic investigation[J]. Semin Thromb Hemost, 2016, 42(3):292-305.
doi: 10.1055/s-0035-1570078 pmid: 26962877 |
[6] |
Gresele P, Falcinelli E, Bury L. Inherited platelet function disorders diagnostic approach and management[J]. Hamostaseologie, 2016, 36(4):265-278.
pmid: 27484722 |
[7] |
Palma-Barqueros V, Revilla N, Sánchez A, et al. Inherited platelet disorders: an updated overview[J]. Int J Mol Sci, 2021, 22(9):4521.
doi: 10.3390/ijms22094521 |
[8] |
Ballmaier M, Germeshausen M. Congenital amega-karyocytic thrombocytopenia: clinical presentation, diagnosis, and treatment[J]. Semin Thromb Hemost, 2011, 37(6):673-681.
doi: 10.1055/s-0031-1291377 pmid: 22102270 |
[9] |
Germeshausen M, Ballmaier M. CAMT-MPL: congenital amegakaryocytic thrombocytopenia caused by MPL mutations - heterogeneity of a monogenic disorder - a comprehensive analysis of 56 patient[J]. Haematologica, 2021, 106(9):2439-2448.
doi: 10.3324/haematol.2020.257972 pmid: 32703794 |
[10] |
Pecci A, Balduini CL. Inherited thrombocytopenias: an updated guide for clinicians[J]. Blood Rev, 2021, 48:100784.
doi: 10.1016/j.blre.2020.100784 |
[11] |
Thompson AA, Woodruff K, Feig SA. Congenital thrombocytopenia and radio-ulnar synostosis: a new familial syndrome[J]. Br J Haematol, 2001, 113(4):866-870.
doi: 10.1046/j.1365-2141.2001.02834.x |
[12] |
Nurden AT, Nurden P. Inherited thrombocytopenias: history, advances and perspectives[J]. Haematologica, 2020, 105(8):2004-2019.
doi: 10.3324/haematol.2019.233197 pmid: 32527953 |
[13] |
Lacruz RS, Feske S. Diseases caused by mutations in ORAI1 and STIM1[J]. Ann N Y Acad Sci, 2015, 1356(1):45-79.
doi: 10.1111/nyas.12938 |
[14] |
Monteiro M, Almeida L, Morais M. Bernard Soulier syndrome: a rare, frequently misdiagnosed and poorly managed bleeding disorder[J]. BMJ Case Rep, 2021, 14(8):e243518.
doi: 10.1136/bcr-2021-243518 |
[15] |
Andrews RK, Berndt MC. Bernard-Soulier syndrome: an update[J]. Semin Thromb Hemost, 2013, 39(6):656-662.
doi: 10.1055/s-0033-1353390 pmid: 23929303 |
[16] |
Favier M, Bordet JC, Favier R, et al. Mutations of the integrin alphaIIb/beta3 intracytoplasmic salt bridge cause macrothrombocytopenia and enlarged platelet alpha-granules[J]. Am J Hematol, 2018, 93(2):195-204.
doi: 10.1002/ajh.24958 pmid: 29090484 |
[17] |
Morais S, Oliveira J, Lau C, et al. αIIbβ3 variants in ten families with autosomal dominant macrothrombocytopenia: Expanding the mutational and clinical spectrum[J]. PLoS One, 2020, 15(12):e0235136.
doi: 10.1371/journal.pone.0235136 |
[18] | Luo XJ, Cao K, Liu J, et al. Gene analysis and clinical features of MYH9-related disease[J]. Zhonghua Er Ke Za Zhi, 2021, 59(11):957-962. |
[19] | Jiang J, Zhou J, Wei M, et al. Clinical and molecular characteristics of Wiskott-Aldrich Syndrome in five unrelated Chinese families[J]. Scand J Immunol, 2022, 95(1):e13115. |
[20] |
Blancas-Galicia L, Escamilla-Quiroz C, Yamazaki-Nakashimada MA. Wiskott-Aldrich syndrome: an updated review[J]. Rev Alerg Mex, 2011, 58(4):213-218.
pmid: 24007832 |
[21] |
Levin C, Koren A, Pretorius E, et al. Deleterious mutation in the FYB gene is associated with congenital autosomal recessive small-platelet thrombocytopenia[J]. J Thromb Haemost, 2015, 13(7):1285-1292.
doi: 10.1111/jth.12966 pmid: 25876182 |
[22] |
Spindler M, van Eeuwijk JMM, Schurr Y, et al. ADAP deficiency impairs megakaryocyte polarization with ectopic proplatelet release and causes microthrombocytopenia[J]. Blood, 2018, 132(6):635-646.
doi: 10.1182/blood-2018-01-829259 pmid: 29950291 |
[23] | Brigida I, Zoccolillo M, Cicalese MP, et al. T-cell defects in patients with ARPC1B germline mutations account for combined immunodeficiency[J]. Blood, 2018, 132(22):2362-2374. |
[24] |
Kahr WH, Pluthero FG, Elkadri A, et al. Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease[J]. Nat Commun, 2017, 8:14816.
doi: 10.1038/ncomms14816 |
[25] |
Marconi C, Di Buduo CA, LeVine K, et al. Loss-of-function mutations in PTPRJ cause a new form of inherited thrombocytopenia[J]. Blood, 2019, 133(12):1346-1357.
doi: 10.1182/blood-2018-07-859496 |
[26] |
Sims MC, Mayer L, Collins JH, et al. Novel manifestations of immune dysregulation and granule defects in gray platelet syndrome[J]. Blood, 2020, 136(17):1956-1967.
doi: 10.1182/blood.2019004776 |
[27] |
Pluthero FG, Kahr WHA. Gray platelet syndrome: NBEAL2 mutations are associated with pathology beyond megakaryocyte and platelet function defects[J]. J Thromb Haemost, 2021, 19(2):318-322.
doi: 10.1111/jth.15177 pmid: 33300270 |
[28] | Liang M, Soomro A, Tasneem S, et al. Enhancer-gene rewiring in the pathogenesis of Quebec platelet disorder[J]. Blood, 2020, 136(23):2679-2690. |
[29] |
Frontini M. Breaking barriers: Quebec platelet disorder[J]. Blood, 2020, 136(23):2603-2604.
doi: 10.1182/blood.2020008213 pmid: 33270854 |
[30] |
Bastida JM, Morais S, Palma-Barqueros V, et al. Identification of novel variants in ten patients with Hermansky-Pudlak syndrome by high-throughput sequencing[J]. Ann Med, 2019, 51(2):141-148.
doi: 10.1080/07853890.2019.1587498 pmid: 30990103 |
[31] |
Merideth MA, Introne WJ, Wang JA, et al. Genetic variants associated with Hermansky- Pudlak syndrome[J]. Platelets, 2020, 31(4):544-547.
doi: 10.1080/09537104.2019.1663810 pmid: 32436471 |
[32] |
Huizing M, Malicdan MCV, Wang JA, et al. Towards the targeted management of Chediak-Higashi syndrome[J]. Orphanet J Rare Dis, 2014, 9:132.
doi: 10.1186/s13023-014-0132-6 |
[33] | Castano-Jaramillo LM, Lugo-Reyes SO, Cruz Munoz ME, et al. Diagnostic and therapeutic caveats in Griscelli syndrome[J]. Scand J Immunol, 2021, 93(6):e13034. |
[34] |
Nurden A. Profiling the genetic and molecular cha-racteristics of glanzmann thrombasthenia: can it guide current and future therapies?[J]. J Blood Med, 2021, 12:581-599.
doi: 10.2147/JBM.S273053 pmid: 34267570 |
[35] |
Botero JP, Lee K, Branchford BR, et al. Glanzmann thrombasthenia: genetic basis and clinical correlates[J]. Haematologica, 2020, 105(4):888-894.
doi: 10.3324/haematol.2018.214239 |
[36] |
Jandrot-Perrus M, Hermans C, Mezzano D. Platelet glycoprotein VI genetic quantitative and qualitative defects[J]. Platelets, 2019, 30(6):708-713.
doi: 10.1080/09537104.2019.1610166 pmid: 31068042 |
[37] |
Noris P, Guidetti GF, Conti V, et al. Autosomal dominant thrombocytopenias with reduced expression of glycoprotein Ia[J]. Thromb Haemost, 2006, 95(3):483-489.
doi: 10.1160/TH05-06-0421 |
[38] |
Cattaneo M. The platelet P2Y12 receptor for adenosine diphosphate: congenital and drug-induced defects[J]. Blood, 2011, 117(7):2102-2112.
doi: 10.1182/blood-2010-08-263111 pmid: 20966167 |
[39] |
Palma-Barqueros V, Bohdan N, Revilla N, et al. PTGS1 gene variations associated with bleeding and platelet dysfunction[J]. Platelets, 2021, 32(5):710-716.
doi: 10.1080/09537104.2020.1782370 |
[40] |
Palma-Barqueros V, Crescente M, de la Morena ME, et al. A novel genetic variant in PTGS1 affects N-glycosylation of cyclooxygenase-1 causing a dominant-negative effect on platelet function and bleeding diajournal[J]. Am J Hematol, 2021, 96(3):E83-E88.
doi: 10.1002/ajh.26076 pmid: 33326144 |
[41] |
Rodeghiero F, Tosetto A, Abshire T, et al. ISTH/SSC joint VWF and Perinatal/Pediatric Hemostasis Subcommittees Working Group. ISTH/SSC bleeding assessment tool: a standardized questionnaire and a proposal for a new bleeding score for inherited bleeding disorders[J]. J Thromb Haemost, 2010, 8(9):2063-2065.
doi: 10.1111/j.1538-7836.2010.03975.x pmid: 20626619 |
[42] |
Federici AB, Bucciarelli P, Castaman G, et al. The bleeding score predicts clinical outcomes and replacement therapy in adults with von Willebrand disease[J]. Blood, 2014, 123(26):4037-4044.
doi: 10.1182/blood-2014-02-557264 pmid: 24786773 |
[43] |
Mathews N, Rivard GE, Bonnefoy A. Glanzmann thrombasthenia: perspectives from clinical practice on accurate diagnosis and optimal treatment strategies[J]. J Blood Med, 2021, 12:449-463.
doi: 10.2147/JBM.S271744 |
[44] |
Lambert MP. Inherited platelet disorders: a modern approach to evaluation and treatments[J]. Hematol Oncol Clin North Am, 2019, 33(3):471-487.
doi: 10.1016/j.hoc.2019.01.008 |
[45] |
Leissinger C, Carcao M, Gill JC, et al. Desmopressin (DDAVP) in the management of patients with congenital bleeding disorders[J]. Haemophilia, 2014, 20(2):158-167.
doi: 10.1111/hae.12254 pmid: 23937614 |
[46] |
Poon MC. The use of recombinant activated factor VII in patients with Glanzmann’s thrombasthenia[J]. Thromb Haemost, 2021, 121(3):332-340.
doi: 10.1055/s-0040-1718373 |
[47] | Hoffman M, Monroe III DM, Roberts HR. Activated factor VII activates factors IX and X on the surface of activated platelets: thoughts on the mechanism of action of high-dose activated factor VII[J]. Blood Coagul Fibrinolysis, 1998, 9(Suppl 1):S61-S65. |
[48] |
Monroe DM, Hoffman M, Oliver JA, et al. Platelet activity of high-dose factor VIIa is independent of tissue factor[J]. Br J Haematol, 1997, 99(3):542-547.
doi: 10.1046/j.1365-2141.1997.4463256.x |
[49] |
Oshima K, Imai K, Albert MH, et al. Hematopoietic stem cell transplantation for X-Linked thrombocytopenia with mutations in the WAS gene[J]. J Clin Immunol, 2015, 35(1):15-21.
doi: 10.1007/s10875-014-0105-5 |
[50] |
Mallhi KK, Petrovic A, Ochs HD. Hematopoietic stem cell therapy for Wiskott-Aldrich syndrome: improved outcome and quality of life[J]. J Blood Med, 2021, 12:435-447.
doi: 10.2147/JBM.S232650 |
[51] |
Hacein-Bey Abina S, Gaspar HB, Blondeau J, et al. Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome[J]. JAMA, 2015, 313(15):1550-1563.
doi: 10.1001/jama.2015.3253 pmid: 25898053 |
[1] | LUO Zhiqiang, CHEN Li, LU Xinguo, LIAO Jianxiang, LUO Xufeng. The treatment of the first case of presymptomatic spinal muscular atropy in the Chinese Mainland: a case report with 43 months follow-up [J]. Journal of Clinical Pediatrics, 2025, 43(1): 40-44. |
[2] | ZHONG Jinhong, WANG Can, CHEN Fang. Progress in the research of infantile fiberoptic bronchoscopy sedation [J]. Journal of Clinical Pediatrics, 2025, 43(1): 50-55. |
[3] | XING Xiaodong, LIU Yan, LIU Xinzhu, JIANG Wengao, ZHANG Jian. Medication therapy management of patients with spinal muscular atrophy during the perioperative period of scoliosis correction surgery [J]. Journal of Clinical Pediatrics, 2025, 43(1): 70-76. |
[4] | HUANG Shiyu, LUO Lijuan, WANG Jing, CHEN Xia, CAO Qing. Early diagnosis, treatment and follow-up of 6 children with autoinflammatory diseases caused by NLRP3 gene variation [J]. Journal of Clinical Pediatrics, 2024, 42(7): 643-647. |
[5] | KANG Li, HUANG Jiaoling. The impact of infectious disease outbreaks on the pediatric healthcare system and countermeasures [J]. Journal of Clinical Pediatrics, 2024, 42(6): 475-479. |
[6] | MA Tao, LU Jie, XU Hui, ZHAO Shunying, LI Huimin. Clinical characteristics of extrapulmonary tuberculosis in 473 children [J]. Journal of Clinical Pediatrics, 2024, 42(6): 491-496. |
[7] | HUANG Lisu, LIN Luona, ZHANG Xianli. From practice to consensus, from consensus to practice: interpretation of Chinese expert consensus on the diagnosis and treatment of respiratory syncytial virus infections in children (2023 edition) [J]. Journal of Clinical Pediatrics, 2024, 42(6): 553-557. |
[8] | MAO Meng, SHAO Jie, CHEN Jinjin, SHEN Lixiao. Interpretation of Catch-up growth in infants and young children with faltering growth: expert opinion to guide general clinicians [J]. Journal of Clinical Pediatrics, 2024, 42(5): 390-398. |
[9] | LI Haiqi. Problems and countermeasures in the diagnosis of food allergy [J]. Journal of Clinical Pediatrics, 2024, 42(4): 277-281. |
[10] | LI Juan, DAI Jihong. Current status of diagnosis and treatment of protracted bacterial bronchitis in children [J]. Journal of Clinical Pediatrics, 2024, 42(4): 373-378. |
[11] | GU Yutong, YANG Fen, YE Jianmin, HUA Li, LI Jing, DING Guodong. Macrolide resistance in hospitalized children with Mycoplasma pneumoniae pneumonia and its clinical diagnosis and treatment [J]. Journal of Clinical Pediatrics, 2024, 42(3): 182-186. |
[12] | LIN Jiao, XU Xinxing, WANG Chuankai, JIANG Liqiong, WANG Chunlin. Progress in diagnosis and treatment of Bardet Biedl syndrome [J]. Journal of Clinical Pediatrics, 2024, 42(2): 157-163. |
[13] | WANG Jian, LI Niu. New trends in the diagnosis and treatment of rare diseases in the digital medical era [J]. Journal of Clinical Pediatrics, 2024, 42(2): 96-101. |
[14] | ZENG Xiangli, ZHENG Liangrong, DAI Yongqiang, YIN Gendi, HUANG Qiling, MOU Yikun, QIN Feng, ZHANG Shuqi, LI Lingwei, LI Zhicheng. Causes, clinical features, and prognosis of dizziness and vertigo in children: an 18-year retrospective analysis at a single center [J]. Journal of Clinical Pediatrics, 2024, 42(12): 1010-1014. |
[15] | FENG Shuyue, ZHANG Heng, SUN Mengjiao, FANG Yongjun. Clinical efficacy analysis of AVDC/ICE regimen in the treatment of 10 pediatric extracranial malignant rhabdoid tumors [J]. Journal of Clinical Pediatrics, 2024, 42(12): 1032-1038. |
|