[1] |
Adler A, Bennett P, Colagiuri S, et al. Classification of diabetes mellitus[EB/OL]. (2019-04-21)[2020-02-06]. https://www.who.int/publications/i/item/classification-of-diabetes-mellitus.
|
[2] |
Hattersley AT, Saw G, Polak M, et al. ISPAD clinical practice consensus guidelines 2018: the diagnosis and management of monogenic diabetes in children and adolescents[J]. Pediatr Diabetes, 2018, 19(Suppl 27): 47-63.
doi: 10.1111/pedi.12772
|
[3] |
Glotov OS, Serebryakova EA, Turkunova ME, et al. Whole exome sequencing in Russian children with non type 1 diabetes mellitus reveals a wide spectrum of genetic variants in MODY related and unrelated genes[J]. Mol Med Rep, 2019, 20(6): 4905-4914.
doi: 10.3892/mmr.2019.10751
pmid: 31638168
|
[4] |
Ming-Qiang Z, Yang-Li D, Ke H, et al. Maturity onset diabetes of the young (MODY) in Chinese children: genes and clinical phenotypes[J]. J Pediatr Endocrinol Metab, 2019, 32(7): 759-765.
doi: 10.1515/jpem-2018-0446
pmid: 31216263
|
[5] |
Sun Y, Hu G, Luo J, et al. Mutations in methionyl-tRNA synthetase gene in a Chinese family with interstitial lung and liver disease, postnatal growth failure and anemia[J]. J Hum Genet, 2017, 62(6): 647-651.
doi: 10.1038/jhg.2017.10
pmid: 28148924
|
[6] |
Bansal V, Gassenhuber J, Phillips T, et al. Spectrum of mutations in monogenic diabetes genes identified from high-throughput DNA sequencing of 6888 individuals[J]. BMC Med, 2017, 15(1): 213.
doi: 10.1186/s12916-017-0977-3
pmid: 29207974
|
[7] |
Li M, Wang S, Xu K, et al. High prevalence of a monogenic cause in Han Chinese diagnosed with type 1 diabetes, partly driven by nonsyndromic recessive WFS1 mutations[J]. Diabetes, 2020, 69(1): 121-126.
doi: 10.2337/db19-0510
|
[8] |
Pihoker C, Gilliam LK, Ellard S, et al. Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: results from the SEARCH for Diabetes in Youth[J]. J Clin Endocrinol Metab, 2013, 98(10): 4055-4062.
doi: 10.1210/jc.2013-1279
|
[9] |
Li X, Ting TH, Sheng H, et al. Genetic and clinical characteristics of Chinese children with Glucokinase-maturity-onset diabetes of the young (GCK-MODY)[J]. BMC Pediatr, 2018, 18(1): 101.
doi: 10.1186/s12887-018-1060-8
|
[10] |
Liang H, Zhang Y, Li M, et al. Recognition of maturity-onset diabetes of the young in China[J]. J Diabetes Investig, 2021, 12(4): 501-509.
doi: 10.1111/jdi.13378
|
[11] |
Chakera AJ, Steele AM, Gloyn AL, et al. Recognition and management of individuals with hyperglycemia because of a heterozygous glucokinase mutation[J]. Diabetes Care, 2015, 38(7): 1383-1392.
doi: 10.2337/dc14-2769
pmid: 26106223
|
[12] |
Stride A, Shields B, Gill-Carey O, et al. Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia[J]. Diabetologia, 2014, 57(1): 54-56.
doi: 10.1007/s00125-013-3075-x
|
[13] |
Awa WL, Thon A, Raile K, et al. Genetic and clinical characteristics of patients with HNF1A gene variations from the German-Austrian DPV database[J]. Eur J Endocrinol, 2011, 164(4): 513-520.
doi: 10.1530/EJE-10-0842
pmid: 21224407
|
[14] |
Boesgaard TW, Pruhova S, Andersson EA, et al. Further evidence that mutations in INS can be a rare cause of Maturity-Onset Diabetes of the Young (MODY)[J]. BMC Med Genet, 2010, 11: 42.
doi: 10.1186/1471-2350-11-42
pmid: 20226046
|
[15] |
Dusatkova L, Dusatkova P, Vosahlo J, et al. Frameshift mutations in the insulin gene leading to prolonged molecule of insulin in two families with Maturity-Onset Diabetes of the Young[J]. Eur J Med Genet, 2015, 58(4): 230-234.
doi: 10.1016/j.ejmg.2015.02.004
pmid: 25721872
|
[16] |
Xiao X, Liu L, Xiao Y, et al. Novel frameshift mutation in the insulin (INS) gene in a family with maturity onset diabetes of the young (MODY)[J]. J Diabetes, 2019, 11(1): 83-86.
doi: 10.1111/1753-0407.12849
|