[1] |
Feng H, Khalil S, Neubig RR, et al. A mechanistic review on GNAO1-associated movement disorder[J]. Neurobiol Dis, 2018, 116: 131-141.
doi: 10.1016/j.nbd.2018.05.005
|
[2] |
Zamponi GW, Currie KP. Regulation of Ca(V)2 calcium channels by G protein coupled receptors[J]. Biochim Biophys Acta, 2013, 1828(7): 1629-1643.
doi: 10.1016/j.bbamem.2012.10.004
pmid: 23063655
|
[3] |
Mayfield J, Blednov YA, Harris RA. Behavioral and genetic evidence for GIRK channels in the CNS: role in physiology, pathophysiology, and drug addiction[J]. Int Rev Neurobiol, 2015, 123: 279-313.
doi: 10.1016/bs.irn.2015.05.016
pmid: 26422988
|
[4] |
Nakamura K, Kodera H, Akita T, et al. De novo mutations in GNAO1, encoding a Galphao subunit of heterotrimeric G proteins, cause epileptic encephalopathy[J]. Am J Hum Genet, 2013, 93(3): 496-505.
doi: 10.1016/j.ajhg.2013.07.014
|
[5] |
Saitsu H, Fukai R, Ben-Zeev B, et al. Phenotypic spectrum of GNAO1 variants: epileptic encephalopathy to involuntary movements with severe developmental delay[J]. Eur J Hum Genet, 2016, 24(1): 129-134.
doi: 10.1038/ejhg.2015.92
|
[6] |
Kulkarni N, Tang S, Bhardwaj R, et al. Progressive movement disorder in brothers carrying a GNAO1 mutation responsive to deep brain stimulation[J]. J Child Neurol, 2016, 31(2): 211-214.
doi: 10.1177/0883073815587945
pmid: 26060304
|
[7] |
Feng H, Sjögren B, Karaj B, et al. Movement disorder in GNAO1 encephalopathy associated with gain-of-function mutations[J]. Neurology, 2017, 89(8): 762-770.
doi: 10.1212/WNL.0000000000004262
|
[8] |
Koy A, Cirak S, Gonzalez V, et al. Deep brain stimulation is effective in pediatric patients with GNAO1 associated severe hyperkinesia[J]. J Neurol Sci, 2018, 391: 31-39.
doi: 10.1016/j.jns.2018.05.018
|
[9] |
Waak M, Mohammad SS, Coman D, et al. GNAO1-related movement disorder with life-threatening exacerbations: movement phenomenology and response to DBS[J]. J Neurol Neurosurg Psychiatry, 2018, 89(2): 221-222.
doi: 10.1136/jnnp-2017-315653
|
[10] |
Ananth AL, Robichaux-Viehoever A, Kim YM, et al. Clinical course of six children with GNAO1 mutations causing a severe and distinctive movement disorder[J]. Pediatr Neurol, 2016, 59: 81-84.
doi: 10.1016/j.pediatrneurol.2016.02.018
|
[11] |
Sakamoto S, Monden Y, Fukai R, et al. A case of severe movement disorder with GNAO1 mutation responsive to topiramate[J]. Brain Dev, 2017, 39(5): 439-443.
doi: 10.1016/j.braindev.2016.11.009
|
[12] |
Yilmaz S, Turhan T, Ceylaner S, et al. Excellent response to deep brain stimulation in a young girl with GNAO1-related progressive choreoathetosis[J]. Childs Nerv Syst, 2016, 32(9): 1567-1568.
doi: 10.1007/s00381-016-3139-6
|
[13] |
Danti FR, Galosi S, Romani M, et al. GNAO1encephalopathy: Broadening the phenotype and evaluating treatment and outcome[J]. Neurol Genet, 2017, 3(2): e143.
doi: 10.1212/NXG.0000000000000143
|
[14] |
Honey CM, Malhotra AK, Tarailo-Graovac M, et al. GNAO1 mutation-induced pediatric dystonic storm rescue with pallidal deep brain stimulation[J]. J Child Neurol, 2018, 33(6): 413-416.
doi: 10.1177/0883073818756134
|
[15] |
Benato A, Carecchio M, Burlina A, et al. Long-term effect of subthalamic and pallidal deep brain stimulation for status dystonicus in children with methylmalonic acidemia and GNAO1 mutation[J]. J Neural Transm (Vienna), 2019, 126(6): 739-757.
|
[16] |
Yamashita Y, Ogawa T, Ogaki K, et al. Neuroimaging evaluation and successful treatment by using directional deep brain stimulation and levodopa in a patient with GNAO1-associated movement disorder: A case report[J]. J Neurol Sci, 2020, 411:116710.
doi: 10.1016/j.jns.2020.116710
|