Journal of Clinical Pediatrics ›› 2023, Vol. 41 ›› Issue (4): 300-310.doi: 10.12372/jcp.2023.23e0038
• Standard · Protocol · Guideline • Previous Articles Next Articles
Received:
2023-02-07
Online:
2023-03-15
Published:
2023-04-07
[1] |
Chi H, Chang L, Chao YC, et al. Pathogenesis and preventive tactics of immune-mediated non-pulmonary COVID-19 in children and beyond[J]. Int J Mol Sci, 2022, 23(22): 14157.
doi: 10.3390/ijms232214157 |
[2] |
Urso L, Distefano MG, Cambula G, et al. The case of encephalitis in a COVID-19 pediatric patient[J]. Neurol Sci, 2022, 43(1): 105-112.
doi: 10.1007/s10072-021-05670-9 |
[3] |
Siracusa L, Cascio A, Giordano S, et al. Neurological complications in pediatric patients with SARS-CoV-2 infection: a systematic review of the literature[J]. Italian J Pediatr. 2021, 47(1): 123
doi: 10.1186/s13052-021-01066-9 |
[4] |
Hilado M, Banh M, Homans J, et al. Pediatric autoimmune encephalitis following COVID-19 infection[J]. J Child Neurol, 2022, 37(4): 268-272.
doi: 10.1177/08830738211069814 pmid: 35014889 |
[5] |
Kim Y, Walser SA, Asghar SJ, et al. A comprehensive review of neurologic manifestations of COVID-19 and management of pre-existing neurologic disorders in children[J]. J Child Neurol, 2021, 36(4): 324-330.
doi: 10.1177/0883073820968995 pmid: 33112694 |
[6] |
Valderas C, Méndez G, Echeverría A, et al. COVID-19 and neurologic manifestations: a synthesis from the child neurologist’s corner[J]. World J Pediatr, 2022, 18(6): 373-382.
doi: 10.1007/s12519-022-00550-4 |
[7] |
Ray STJ, Abdel-Mannan O, Sa M, et al. Neurological manifestations of SARS-CoV-2 infection in hospitalised children and adolescents in the UK: a prospective national cohort study[J]. Lancet Child Adolesc Health, 2021, 5(9): 631-641.
doi: 10.1016/S2352-4642(21)00193-0 pmid: 34273304 |
[8] |
Tso WWY, Kwan MYW, Wang YL, et al. Severity of SARS-CoV-2 Omicron BA.2 infection in unvaccinated hospitalized children: comparison to influenza and parainfluenza infections[J]. Emerg Microbes Infect, 2022, 11(1): 1742-1750.
doi: 10.1080/22221751.2022.2093135 |
[9] |
LaRovere KL, Riggs BJ, Poussaint TY, et al. Neurologic involvement in children and adolescents hospitalized in the United States for COVID-19 or multisystem inflammatory syndrome[J]. JAMA Neurol, 2021, 78(5): 536-547.
doi: 10.1001/jamaneurol.2021.0504 pmid: 33666649 |
[10] |
Dang D, Wang L, Zhang C, et al. Potential effects of SARS-CoV-2 infection during pregnancy on fetuses and newborns are worthy of attention[J]. J Obstet Gynaecol Res, 2020, 46(10): 1951-1957.
doi: 10.1111/jog.v46.10 |
[11] |
Baig AM, Khaleeq A, Ali U, et al. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms[J]. ACS Chem Neurosci, 2020, 11(7): 995-998.
doi: 10.1021/acschemneuro.0c00122 pmid: 32167747 |
[12] |
Zhang H, Penninger JM, Li Y, et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target[J]. Intensive Care Med, 2020, 46(4): 586-590.
doi: 10.1007/s00134-020-05985-9 pmid: 32125455 |
[13] |
Chen R, Wang K, Yu J, et al. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in human and mouse brains[J]. Front Neurol, 2021, 11: 573095.
doi: 10.3389/fneur.2020.573095 |
[14] |
Bhaskar S, Sinha A, Banach M, et al. Cytokine storm in COVID-19-immunopathological mechanisms, clinical considerations, and therapeutic approaches: the REPROGRAM Consortium Position Paper[J]. Front Immunol, 2020, 11: 1648.
doi: 10.3389/fimmu.2020.01648 pmid: 32754159 |
[15] |
Schober ME, Pavia AT, Bohnsack JF, et al. Neurologic manifestations of COVID-19 in children: emerging pathophysiologic insights[J]. Pediatr Crit Care Med, 2021, 22(7): 655-661.
doi: 10.1097/PCC.0000000000002774 |
[16] | Stafstrom CE, Jantzie LL. COVID-19: neurological considerations in neonates and children[J]. Children (Basel), 2020, 7(9): 133. |
[17] |
Nordvig AS, Fong KT, Willey JZ, et al. Potential neurologic manifestations of COVID-19[J]. Neurol Clin Pract, 2021, 11(2): e135-e146.
doi: 10.1212/CPJ.0000000000000897 pmid: 33842082 |
[18] |
Maury A, Lyoubi A, Peifer-Smadja N, et al. Neurological manifestations associated with SARS-CoV-2 and other coronaviruses: a narrative review for clinicians[J]. Rev Neurol (Paris), 2021, 177(1-2): 51-64.
doi: 10.1016/j.neurol.2020.10.001 |
[19] |
Franke C, Ferse C, Kreye J, et al. High frequency of cerebrospinal fuid autoantibodies in COVID-19 patients with neurological symptoms[J]. Brain Behav Immun, 2021, 93: 415-419.
doi: 10.1016/j.bbi.2020.12.022 |
[20] |
Vasilevska V, Guest PC, Bernstein HG, et al. Molecular mimicry of NMDA receptors may contribute to neuropsychiatric symptoms in severe COVID-9 cases[J]. J Neuroinflammation, 2021, 18(1): 245.
doi: 10.1186/s12974-021-02293-x |
[21] |
Smadja DM, Mentzer SJ, Fontenay M, et al. COVID-19 is a systemic vascular hemopathy: insight for mechanistic and clinical aspects[J]. Angiogenesis, 2021, 24(4): 755-788.
doi: 10.1007/s10456-021-09805-6 pmid: 34184164 |
[22] |
Lin JE, Asfour A, Sewell TB, et al. Neurological issues in children with COVID-19[J]. Neurosci Lett, 2021, 743: 135567.
doi: 10.1016/j.neulet.2020.135567 |
[23] |
Boronat S. Neurologic care of COVID-19 in children[J]. Front Neurol, 2021, 11: 613832.
doi: 10.3389/fneur.2020.613832 |
[24] |
Kanberg N, Ashton NJ, Andersson LM, et al. Neuro-chemical evidence of astrocytic and neuronal injury commonly found in COVID-19[J]. Neurology, 2020, 95(12): e1754-e1759.
doi: 10.1212/WNL.0000000000010111 |
[25] | Hennon TR, Penque MD, Abdul-Aziz R, et al. COVID-19 associated multisystem infammatory syndrome in children (MIS-C) guidelines: a Western New York approach[J]. Prog Pediatr Cardiol, 2020, 23: 101232. |
[26] |
Solomon IH, Normandin E, Bhattacharyya S, et al. Neuropathological features of Covid-19[J]. N Engl J Med, 2020, 383(10): 989-992.
doi: 10.1056/NEJMc2019373 |
[27] |
Thakur KT, Miller EH, Glendinning MD, et al. COVID-19 neuropathology at Columbia University Irving Medical Center/New York Presbyterian Hospital[J]. Brain, 2021, 144(9): 2696-2708.
doi: 10.1093/brain/awab148 pmid: 33856027 |
[28] |
Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2[J]. Int J Infect Dis, 2020, 94: 55-58.
doi: S1201-9712(20)30195-8 pmid: 32251791 |
[29] |
Panda PK, Sharawat IK, Panda P, et al. Neurological complications of SARS-CoV-2 infection in children: a systematic review and meta-analysis[J]. J Trop Pediatr, 2021, 67 (3): fmaa070.
doi: 10.1093/tropej/fmaa070 |
[30] |
Sandoval F, Julio K, Méndez G, et al. Neurologic features associated with SARS-CoV-2 infection in children: a case series report[J]. J Child Neurol, 2021, 36(10): 853-866.
doi: 10.1177/0883073821989164 |
[31] |
Saini L, Krishna D, Tiwari S, et al. Post-COVID-19 immune-mediated neurological complications in children: an ambispective study[J]. Pediatr Neurol, 2022, 136: 20-27.
doi: 10.1016/j.pediatrneurol.2022.06.010 pmid: 36049379 |
[32] | Scheuermeier M, Chaves KQ, Marín-Sanabria D, et al. First pediatric case of autoimmune encephalitis associated with COVID-19 in Costa Rica[J]. Cureus, 2022, 14(10): e30616. |
[33] | Cho SM, White N, Premraj L, et al. Neurological manifestations of COVID-19 in adults and children[J]. Brain, 2022: awac332. |
[34] | Lindan CE, Mankad K, Ram D, et al. Neuroimaging manifestations in children with SARS-CoV-2 infection: a multinational, multicentre collaborative study[J]. Lancet Child Adolesc Heal, 2021, 5: 167-177. |
[35] |
Kurd M, Hashavya S, Benenson S, et al. Seizures as the main presenting manifestation of acute SARS-CoV-2 infection in children[J]. Seizure, 2021, 92: 89-93.
doi: 10.1016/j.seizure.2021.08.017 pmid: 34481322 |
[36] |
Lewis A, Frontera J, Placantonakis DG, et al. Cerebrospinal fuid in COVID-19: a systematic review of the literature[J]. J Neurol Sci, 2021, 421: 117316.
doi: 10.1016/j.jns.2021.117316 |
[37] |
Abdel-Mannan O, Eyre M, Löbel U, et al. Neurologic and radiographic fndings associated with COVID-19 infection in children[J]. JAMA Neurol, 2020, 77(11): 1440-1445.
doi: 10.1001/jamaneurol.2020.2687 |
[38] |
Kabeerdoss J, Pilania RK, Karkhele R, et al. Severe COVID-19, multisystem infammatory syndrome in children, and Kawasaki disease: immunological mechanisms, clinical manifestations and management[J]. Rheumatol Int, 2021, 41(1): 19-32.
doi: 10.1007/s00296-020-04749-4 |
[39] |
Riphagen S, Gomez X, Gonzalez-Martinez C, et al. Hyperinflammatory shock in children during COVID-19 pandemic[J]. Lancet, 2020, 395(10237): 1607-1608.
doi: S0140-6736(20)31094-1 pmid: 32386565 |
[40] | Henderson LA, Canna SW, Friedman KG, et al. American College of Rheumatology Clinical Guidance for Multisystem Inflammatory Syndrome in Children Associated With SARS-CoV-2 and Hyperinflammation in Pediatric COVID-19: version 2[J]. Arthritis Rheumatol, 2021, 73(4): e13-e29. |
[41] |
Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study[J]. Lancet, 2020, 395(10239): 1771-1778.
doi: S0140-6736(20)31103-X pmid: 32410760 |
[42] | Toubiana J, Poirault C, Corsia A, et al. Kawasaki-like multisystem inflammatory syndrome in children during the COVID-19 pandemic in Paris, France: prospective observational study[J]. BMJ, 2020, 369: m2094. |
[43] |
Cheung EW, Zachariah P, Gorelik M, et al. Multisystem inflammatory syndrome related to COVID-19 in previously healthy children and adolescents in New York City[J]. JAMA, 2020, 324(3): 294-296.
doi: 10.1001/jama.2020.10374 pmid: 32511676 |
[44] |
Chiotos K, Bassiri H, Behrens EM, et al. Multisystem inflammatory syndrome in children during the coronavirus 2019 pandemic: a case series[J]. J Pediatr Infect Dis Soc, 2020, 9(3): 393-398.
doi: 10.1093/jpids/piaa069 |
[45] |
Toraih EA, Hussein MH, Elshazli RM, et al. Multisystem infammatory syndrome in pediatric COVID-19 patients: a meta analysis[J]. World J Pediatr, 2021, 17(2): 141-151.
doi: 10.1007/s12519-021-00419-y pmid: 33608839 |
[46] |
Whittaker E, Bamford A, Kenny J, et al. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2[J]. JAMA, 2020, 324(3): 259-269.
doi: 10.1001/jama.2020.10369 pmid: 32511692 |
[47] |
Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem inflammatory syndrome in US children and adolescents[J]. N Engl J Med, 2020, 383(4): 334-346.
doi: 10.1056/NEJMoa2021680 |
[48] |
Dufort EM, Koumans EH, Chow EJ, et al. Multisystem inflammatory syndrome in children in New York State[J]. N Engl J Med, 2020, 383(4): 347-358.
doi: 10.1056/NEJMoa2021756 |
[49] |
Wang PY, Yang MT, Liang JS. Acute necrotizing encephalopathy caused by SARS-CoV-2 in a child[J]. Pediatr Neonatol, 2022, 63(6): 642-644.
doi: 10.1016/j.pedneo.2022.06.003 |
[50] |
Ho JHY, Lee CYM, Chiong YK, et al. SARS-CoV-2-related acute necrotizing encephalopathy of childhood with good response to tocilizumab in an adolescent[J]. Pediatr Neurol, 2023, 139: 65-69.
doi: 10.1016/j.pediatrneurol.2022.11.010 |
[51] | Jiang J, Wang YE, Palazzo AF, et al. Roles of nucleoporin ranBP2/Nup358 in acute necrotizing encephalopathy type 1 (ANE1) and viral infection[J]. Int J Mol Sci, 2022, 23(7), 3548. |
[52] | Lazarte-Rantes C, Guevara-Castañón J, Romero L, et al. Acute necrotizing encephalopathy associated with SARS-CoV-2 exposure in a pediatric patient[J]. Cureus, 2021, 13(5): e15018. |
[53] |
Al-Anezi A, Sotirova-Koulli V, Shalaby O, et al. Biotin-thiamine responsive basal ganglia disease in the era of COVID-19 outbreak diagnosis not to be missed: a case report[J]. Brain Dev, 2022, 44(4): 303-307.
doi: 10.1016/j.braindev.2021.12.003 |
[54] | Mizuguchi M, Yamanouchi H, Ichiyama T, et al. Acute encephalopathy associated with influenza and other viral infections[J]. Acta Neurol Scand Suppl, 2007, 186: 45-56. |
[55] |
Hoshino A, Saitoh M, Miyagawa T, et al. Specific HLA genotypes confer susceptibility to acute necrotizing encephalopathy[J]. Genes Immun, 2016, 17(6), 367-369.
doi: 10.1038/gene.2016.32 pmid: 27467284 |
[56] |
Poyiadji N, Shahin G, Noujaim D, et al. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: imaging features[J]. Radiology, 2020, 296(2): E119-E120.
doi: 10.1148/radiol.2020201187 |
[57] | Haqiqi A, Samuels TL, Lamb FJ, et al. Acute haemorrhagic leukoencephalitis (Hurst disease) in severe COVID- 19 infection[J]. Brain Behav Immun Health, 2021, 12: 100208. |
[58] |
Zelada-Ríos L, Pacheco-Barrios K, Galecio-Castillo M, et al. Acute disseminated encephalomyelitis and COVID-19: a systematic synthesis of worldwide cases[J]. J Neuroimmunol, 2021, 359: 577674.
doi: 10.1016/j.jneuroim.2021.577674 |
[59] |
Wang Y, Wang Y, Huo L, et al. SARS CoV 2 associated acute disseminated encephalomyelitis: a systematic review of the literature[J]. J Neurol, 2022, 269(3): 1071-1092.
doi: 10.1007/s00415-021-10771-8 |
[60] |
Zhao H, Shen D, Zhou H, et al. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence?[J]. Lancet Neurol, 2020, 19(5): 383-384.
doi: S1474-4422(20)30109-5 pmid: 32246917 |
[61] |
Palaiodimou L, Stefanou MI, Katsanos AH, et al. Prevalence, clinical characteristics and outcomes of Guillain-Barré syndrome spectrum associated with COVID-19: a systematic review and meta-analysis[J]. Eur J Neurol, 2021, 28(10): 3517-3529.
doi: 10.1111/ene.14860 pmid: 33837630 |
[62] |
Stowe J, Andrews N, Wise L, et al. Investigation of the temporal association of Guillain-Barré syndrome with infuenza vaccine and infuenzalike illness using the United Kingdom General Practice Research Database[J]. Am J Epidemiol, 2009, 169(3): 382-388.
doi: 10.1093/aje/kwn310 |
[63] |
Mier-Y-Teran-Romero L, Delorey MJ, Sejvar JJ, et al. Guillain-Barré syndrome risk among individuals infected with Zika virus: a multi-country assessment[J]. BMC Med, 2018, 16(1): 67.
doi: 10.1186/s12916-018-1052-4 pmid: 29759069 |
[64] |
Dos Santos PK, Sigoli E, Bragança LJG, et al. The musculoskeletal involvement after mild to moderate COVID-19 infection[J]. Front Physiol, 2022, 13: 813924.
doi: 10.3389/fphys.2022.813924 |
[65] |
Hannah JR, Ali SS, Nagra D, et al. Skeletal muscles and COVID-19: a systematic review of rhabdomyolysis and myositis in SARS-CoV-2 infection[J]. Clin Exp Rheumatol, 2022, 40(2): 329-338.
pmid: 35225218 |
[66] | Wu PS, Wong SB, Cheng CF, et al. Rhabdomyolysis in pediatric patients with SARS-CoV-2 infection[J]. Children (Basel), 2022, 9(10): 1441. |
[67] |
Saud A, Naveen R, Aggarwal R, et al. COVID-19 and myositis: what we know so far[J]. Curr Rheumatol Rep, 2021, 23(8): 63.
doi: 10.1007/s11926-021-01023-9 pmid: 34216297 |
[68] | Singh B, Kaur P, Mechineni A, et al. Rhabdomyolysis in COVID-19: report of four cases[J]. Cureus, 2020, 12(9): e10686. |
[69] |
Suh J, Amato AA. Neuromuscular complications of coronavirus disease-19[J]. Curr Opin Neurol, 2021, 34(5): 669-674.
doi: 10.1097/WCO.0000000000000970 pmid: 34155186 |
[70] |
Bagnato S, Boccagni C, Marino G, et al. Critical illness myopathy after COVID-19[J]. Int J Infect Dis, 2020, 99: 276-278.
doi: S1201-9712(20)30606-8 pmid: 32763444 |
[71] | Kayim Yildiz O, Yildiz B, Avci O, et al. Clinical, neurophysiological and neuroimaging fndings of critical illness myopathy after COVID-19[J]. Cureus, 2021, 13(3): e13807. |
[72] |
Graham EL, Clark JR, Orban ZS, et al. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized COVID-19 “long haulers”[J]. Ann Clin Transl Neurol, 2021, 8(5): 1073-1085.
doi: 10.1002/acn3.v8.5 |
[73] |
Radtke T, Ulyte A, Puhan MA, et al. Long-term symptoms after SARS-CoV-2 infection in children and adolescents[J]. JAMA, 2021, 326(9): 869-871.
doi: 10.1001/jama.2021.11880 |
[74] | Crook H, Raza S, Nowell J, et al. Long covid-mechanisms, risk factors, and management[J]. BMJ, 2021, 374: n1648 |
[75] |
Buonsenso D, Munblit D, De Rose C, et al. Preliminary evidence on long COVID in children[J]. Acta Paediatr, 2021, 110(7): 2208-2211.
doi: 10.1111/apa.v110.7 |
[76] |
Taquet M, Sillett R, Zhu L, et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1284437 patients[J]. Lancet Psychiatry, 2022, 9(10): 815-827.
doi: 10.1016/S2215-0366(22)00260-7 |
[77] | 国家卫生健康委员会, 国家中医药管理局综合司. 新型冠状病毒肺炎诊疗方案(试行第十版). [EB/OL].[2023-02-07]. http://www.gov.cn/zhengce/zhengceku/2023-01/06/5735343/files/5844ce04246b431dbd322d8ba10afb48.pdf |
[78] | 李兴旺, 杨永弘, 申昆玲, 等. 儿童新型冠状病毒感染诊断、治疗和预防专家共识(第四版)[J]. 中华实用儿科临床杂志, 2022, 37(14): 1053-1065. |
[79] |
Zamani R, Pouremamali R, Rezaei N. Central neuroin-flammation in COVID-19: a systematic review of 182 cases with encephalitis, acute disseminated encephalomyelitis, and necrotizing encephalopathies[J]. Rev Neurosci, 2021, 33(4): 397-412.
doi: 10.1515/revneuro-2021-0082 |
[80] |
Abdel-Mannan O, Eyre M, Löbel U, et al. Neurologic and radiographic findings associated with COVID-19 infection in children[J]. JAMA Neurol, 2020, 77(11): 1440-1445.
doi: 10.1001/jamaneurol.2020.2687 |
[81] |
Yılmaz A, Yayıcı Köken Ö, Şekeroğlu B, et al. A near-global slowing of background activity and epileptic discharges in children with mild to moderately symptomatic COVID-19 infection: an electro-neurophysiological study[J]. Clin EEG Neurosci, 2022, 53(6): 532-542.
doi: 10.1177/15500594221088744 |
[82] |
Rastogi S, Gala F, Kulkarni S, et al. Neurological and neuroradiological patterns with COVID-19 infection in children: a single institutional study[J]. Indian J Radiol Imaging, 2022, 32(4): 510-522.
doi: 10.1055/s-0042-1755250 |
[83] |
Wong AM, Toh CH. Spectrum of neuroimaging mimics in children with COVID-19 infection[J]. Biomed J, 2022, 45(1): 50-62.
doi: 10.1016/j.bj.2021.11.005 |
[84] | Fayyazi A, Pezeshki N, Hosseini F, et al. Effectiveness of prophylaxis treatment in the acute febrile stage of febrile seizure in children under five years old[J]. Iran J Child Neurol, 2022, 16(1): 97-104. |
[85] |
Rathod R, Kale A, Joshi S. Novel insights into the effect of vitamin B12 and omega-3 fatty acids on brain function[J]. J Biomed Sci, 2016, 23: 17.
doi: 10.1186/s12929-016-0241-8 pmid: 26809263 |
[86] | Baltrusch S. The role of neurotropic b vitamins in nerve regeneration[J]. Biomed Res Int, 2021, 9968228. |
No related articles found! |
|