[1] |
Acquaviva C, Benoist JF, Pereira S, et al. Molecular basis of methylmalonyl-CoA mutase apoenzyme defect in 40 European patients affected by mut(o) and mut- forms of methylmalonic acidemia: identification of 29 novel mutations in the MUT gene[J]. Hum Mutat, 2005, 25(2): 167-176.
pmid: 15643616
|
[2] |
杨艳玲, 韩连书. 单纯型甲基丙二酸尿症饮食治疗与营养管理专家共识[J]. 中国实用儿科杂志, 2018, 33(7): 481-486.
|
[3] |
Jiang YZ, Sun LY. The value of liver transplantation for methylmalonic acidemia[J]. Front Pediatr, 2019, 7: 87.
|
[4] |
High KA, Roncarolo MG. Gene therapy[J]. N Engl J Med, 2019, 381(5): 455-464.
|
[5] |
Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview[J]. J Clin Diagn Res, 2015, 9(1): Ge01- Ge06.
|
[6] |
Chandler RJ, Tsai MS, Dorko K, et al. Adenoviral-mediated correction of methylmalonyl-CoA mutase deficiency in murine fibroblasts and human hepatocytes[J]. BMC Med Genet, 2007, 8: 24.
pmid: 17470278
|
[7] |
Peters H, Nefedov M, Sarsero J, et al. A knock-out mouse model for methylmalonic aciduria resulting in neonatal lethality[J]. J Biol Chem, 2003, 278(52): 52909-52913.
doi: 10.1074/jbc.M310533200
pmid: 14555645
|
[8] |
Chandler RJ, Venditti CP. Genetic and genomic systems to study methylmalonic acidemia[J]. Mol Genet Metab, 2005, 86(1-2): 34-43.
pmid: 16182581
|
[9] |
Chandler RJ, Venditti CP. Adenovirus-mediated gene delivery rescues a neonatal lethal murine model of mut(0) methylmalonic acidemia[J]. Hum Gene Ther, 2008, 19(1): 53-60.
doi: 10.1089/hum.2007.0118
pmid: 18052792
|
[10] |
Zhong L, Granelli-Piperno A, Choi Y, et al. Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells[J]. Eur J Immunol, 1999, 29(3): 964-972.
pmid: 10092101
|
[11] |
Gao G, Vandenberghe LH, Alvira MR, et al. Clades of adeno-associated viruses are widely disseminated in human tissues[J]. J Virol, 2004, 78(12): 6381-6388.
pmid: 15163731
|
[12] |
Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy[J]. Mol Ther, 2006, 14(3): 316-327.
doi: 10.1016/j.ymthe.2006.05.009
pmid: 16824801
|
[13] |
Chandler RJ, Venditti CP. Long-term rescue of a lethal murine model of methylmalonic acidemia using adeno-associated viral gene therapy[J]. Mol Ther, 2010, 18(1): 11-16.
doi: 10.1038/mt.2009.247
pmid: 19861951
|
[14] |
Carrillo-Carrasco N, Chandler RJ, Chandrasekaran S, et al. Liver-directed recombinant adeno-associated viral gene delivery rescues a lethal mouse model of methylmalonic acidemia and provides long-term phenotypic correction[J]. Hum Gene Ther, 2010, 21(9): 1147-1154.
doi: 10.1089/hum.2010.008
pmid: 20486773
|
[15] |
Senac JS, Chandler RJ, Sysol JR, et al. Gene therapy in a murine model of methylmalonic acidemia using rAAV9-mediated gene delivery[J]. Gene Ther, 2012, 19(4): 385-391.
doi: 10.1038/gt.2011.108
pmid: 21776024
|
[16] |
Chandler RJ, Venditti CP. Pre-clinical efficacy and dosing of an AAV8 vector expressing human methylmalonyl-CoA mutase in a murine model of methylmalonic acidemia (MMA)[J]. Mol Genet Metab, 2012, 107(3): 617-619.
doi: 10.1016/j.ymgme.2012.09.019
pmid: 23046887
|
[17] |
Manoli I, Sysol JR, Epping MW, et al. FGF21 underlies a hormetic response to metabolic stress in methylmalonic acidemia[J]. JCI Insight, 2018, 3(23): e124351.
|
[18] |
Manoli I, Sysol J, Li L, et al. Muscle targeted transgene expression rescues the lethal phenotype of Mut knockout mice[C]. 34th Annual Meeting of the Society-for-Inherited-Metabolic-Disorders. 2011.
|
[19] |
Mingozzi F, High KA. Overcoming the host immune response to adeno-associated virus gene delivery vectors: the race between clearance, tolerance, neutralization, and escape[J]. Annu Rev Virol, 2017, 4(1): 511-534.
doi: 10.1146/annurev-virology-101416-041936
pmid: 28961410
|
[20] |
Chandler RJ, Di Pasquale G, Sloan JL, et al. Systemic gene therapy for methylmalonic acidemia using the novel adeno-associated viral vector 44.9[J]. Mol Ther Methods Clin Dev, 2022, 27: 61-72.
|
[21] |
Kishimoto TK. Development of ImmTOR tolerogenic nanoparticles for the mitigation of anti-drug antibodies[J]. Front Immunol, 2020, 11: 969.
doi: 10.3389/fimmu.2020.00969
pmid: 32508839
|
[22] |
Ilyinskii PO, Michaud AM, Rizzo GL, et al. ImmTOR nanoparticles enhance AAV transgene expression after initial and repeat dosing in a mouse model of methylmalonic acidemia[J]. Mol Ther Methods Clin Dev, 2021, 22: 279-292.
|
[23] |
Marshall H M, Ronen K, Berry C, et al. Role of PSIP1/LEDGF/p75 in lentiviral infectivity and integration targeting[J]. PLoS One, 2007, 2(12): e1340.
doi: 10.1371/journal.pone.0001340
pmid: 18092005
|
[24] |
Wong ES, McIntyre C, Peters HL, et al. Correction of methylmalonic aciduria in vivo using a codon-optimized lentiviral vector[J]. Hum Gene Ther, 2014, 25(6): 529-538.
doi: 10.1089/hum.2013.111
pmid: 24568291
|
[25] |
Peters HL, Pitt JJ, Wood LR, et al. Mouse models for methylmalonic aciduria[J]. PLoS One, 2012, 7(7): e40609.
|
[26] |
Bulcha JT, Wang Y, Ma H, et al. Viral vector platforms within the gene therapy landscape[J]. Signal Transduct Target Ther, 2021, 6(1): 53.
|
[27] |
罗小平, 应艳琴. 基因编辑与遗传代谢性疾病[J]. 中国儿童保健杂志, 2021, 29(7): 697-700.
doi: 10.11852/zgetbjzz2021-0965
|
[28] |
Barzel A, Paulk NK, Shi Y, et al. Promoterless gene targeting without nucleases ameliorates haemophilia B in mice[J]. Nature, 2015, 517(7534): 360-364.
|
[29] |
Chandler RJ, Venturoni LE, Liao J, et al. Promoterless, nuclease-free genome editing confers a growth advantage for corrected hepatocytes in mice with methylmalonic acidemia[J]. Hepatology, 2021, 73(6): 2223-2237.
|
[30] |
An D, Schneller JL, Frassetto A, et al. Systemic messenger RNA therapy as a treatment for methylmalonic acidemia[J]. Cell Rep, 2017, 21(12): 3548-3558.
doi: S2211-1247(17)31748-5
pmid: 29262333
|
[31] |
An D, Frassetto A, Jacquinet E, et al. Long-term efficacy and safety of mRNA therapy in two murine models of methylmalonic acidemia[J]. EBioMedicine, 2019, 45: 519-528.
doi: S2352-3964(19)30438-4
pmid: 31303505
|
[32] |
Loughrey D, Dahlman JE. Non-liver mRNA delivery[J]. Acc Chem Res, 2022, 55(1): 13-23.
|
[33] |
Witzigmann D, Kulkarni JA, Leung y, et al. Lipid nanopaticle technology for therapeutic gene regulation in the liverlyl[J]. Ady Drug Deliy Rev, 2020(159): 344-363.
|