[1] |
Thébaud B, Goss KN, Laughon M, et al. Broncho-pulmonary dysplasia[J]. Nat Rev Dis Primer, 2019, 5(1): 78.
|
[2] |
Cao Y, Jiang S, Sun J, et al. Assessment of neonatal intensive care unit practices, morbidity, and mortality among very preterm infants in China[J]. JAMA Netw Open, 2021, 4(8): e2118904.
|
[3] |
任淑英, 张勤. 呼吸道微生态的影响因素及其在支气管肺发育不良中的意义[J]. 临床儿科杂志, 2023, 41(10): 715-720.
|
|
Ren SY, Zhang Q. Influencing factors of respiratory tract microecology and its significance in bronchopulmonary dysplasia[J]. Linchuang Erke Zazhi, 2023, 41(10): 715-720.
|
[4] |
Jensen EA, Edwards EM, Greenberg LT, et al. Severity of bronchopulmonary dysplasia among very preterm infants in the United States[J]. Pediatrics, 2021, 148(1): e2020030007.
|
[5] |
Ericsson AC. Bronchopulmonary dysplasia: a crime of opportunity[J]. Eur Respir J, 2020, 55(5): 2000551.
|
[6] |
Gilfillan M, Bhandari A, Bhandari V. Diagnosis and management of bronchopulmonary dysplasia[J]. BMJ, 2021: n1974.
|
[7] |
Hennelly M, Greenberg RG, Aleem S. An update on the prevention and management of bronchopulmonary dysplasia[J]. Pediatric Health Med Ther, 2021, 12: 405-419.
|
[8] |
Moschino L, Zivanovic S, Hartley C, et al. Caffeine in preterm infants: where are we in 2020?[J]. ERJ Open Res, 2020, 6(1): 00330-2019.
|
[9] |
Bruschettini M, Brattström P, Russo C, et al. Caffeine dosing regimens in preterm infants with or at risk for apnea of prematurity[J]. Cochrane Database Syst Rev, 2023, 4(4): CD013873.
|
[10] |
Pritchard KA Jr, Jing X, Teng M, et al. Role of endoplasmic reticulum stress in impaired neonatal lung growth and bronchopulmonary dysplasia[J]. PLoS One, 2022, 17(8): e0269564.
|
[11] |
Li MD, Fu L, Lv BB, et al. Arsenic induces ferroptosis and acute lung injury through mtROS-mediated mitochondria-associated endoplasmic reticulum membrane dysfunction[J]. Ecotoxicol Environ Saf, 2022, 238: 113595.
|
[12] |
He F, Wang QF, Li L, et al. Melatonin protects against hyperoxia-induced apoptosis in alveolar epithelial type II cells by activating the MT2/PI3K/AKT/ETS1 signaling pathway[J]. Lung, 2023, 201(2): 225-234.
|
[13] |
Liu C, Fu C, Sun Y, et al. Itaconic acid regulation of TFEB-mediated autophagy flux alleviates hyperoxia-induced bronchopulmonary dysplasia[J]. Redox Biol, 2024, 72: 103115.
|
[14] |
Jing X, Huang YW, Jarzembowski J, et al. Caffeine ameliorates hyperoxia-induced lung injury by protecting GCH1 function in neonatal rat pups[J]. Pediatr Res, 2017, 82(3): 483-489.
doi: 10.1038/pr.2017.89
pmid: 28399119
|
[15] |
Teng M, Wu T J, Jing X, et al. Temporal dynamics of oxidative stress and inflammation in bronchopulmonary dysplasia[J]. Int J Mol Sci, 2024, 25(18): 10145.
|
[16] |
Wang X, Lv S, Sun J, et al. Caffeine reduces oxidative stress to protect against hyperoxia-induced lung injury via the adenosine A2A receptor/cAMP/PKA/src/ERK1/2/p38MAPK pathway[J]. Redox Rep, 2022, 27(1): 270-278.
doi: 10.1080/13510002.2022.2143114
pmid: 36357965
|
[17] |
Tong X, Li M, Liu N, et al. Hyperoxia induces endoplasmic reticulum stress-associated apoptosis via the IRE1α pathway in rats with bronchopulmonary dysplasia[J]. Mol Med Rep, 2021, 23(1): 33.
|
[18] |
Yang M, Chen Y, Huang X, et al. ETS1 ameliorates hyperoxia-induced bronchopulmonary dysplasia in mice by activating Nrf2/HO-1 mediated ferroptosis[J]. Lung, 2023, 201(4): 425-441.
doi: 10.1007/s00408-023-00639-1
pmid: 37490064
|
[19] |
Wang M, Zhang F, Ning X, et al. Regulating NLRP3 inflammasome-induced pyroptosis via Nrf2: TBHQ limits hyperoxia-induced lung injury in a mouse model of bronchopulmonary dysplasia[J]. Inflammation, 2023, 46(6): 2386-2401.
doi: 10.1007/s10753-023-01885-4
pmid: 37556072
|
[20] |
Zhang S, Li X, Yuan T, et al. Glutamine inhibits inflammation, oxidative stress, and apoptosis and ameliorates hyperoxic lung injury[J]. J Physiol Biochem, 2023, 79(3): 613-623.
doi: 10.1007/s13105-023-00961-5
pmid: 37145351
|
[21] |
Sousa AAP, Chaves LDS, Tarso Facundo H. Mitochondrial electron transport chain disruption and oxidative stress in lipopolysaccharide-induced cardiac dysfunction in rats and mice[J]. Free Radic Res, 2025 May 15:1-15.
|
[22] |
Poonyagariyagorn HK, Metzger S, Dikeman D, et al. Superoxide dismutase 3 dysregulation in a murine model of neonatal lung injury[J]. Am J Respir Cell Mol Biol, 2014, 51(3): 380-390.
|
[23] |
Di S, Fan C, Ma Z, et al. PERK/eIF-2α/CHOP pathway dependent ROS generation mediates butein-induced non-small-cell lung cancer apoptosis and G2/M phase arrest[J]. Int J Biol Sci, 2019, 15(8): 1637-1653.
doi: 10.7150/ijbs.33790
pmid: 31360107
|