Journal of Clinical Pediatrics ›› 2025, Vol. 43 ›› Issue (10): 792-797.doi: 10.12372/jcp.2025.24e1368
• Literature Review • Previous Articles Next Articles
Received:
2024-12-20
Accepted:
2025-06-13
Published:
2025-10-15
Online:
2025-09-29
Contact:
YAN Chonghuai
E-mail:yanchonghuai@xinhuamed.com.cn
CLC Number:
CUI Xinyi, YAN Chonghuai. Research progress of the effects of mercury exposure on the immune system in children[J].Journal of Clinical Pediatrics, 2025, 43(10): 792-797.
[1] |
Parida L, Patel TN. Systemic impact of heavy metals and their role in cancer development: a review[J]. Environ Monit Assess, 2023, 195(6): 766.
doi: 10.1007/s10661-023-11399-z pmid: 37249740 |
[2] | Balali-Mood M, Naseri K, Tahergorabi Z, et al. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic[J]. Front Pharmacol, 2021, 12: 643972. |
[3] |
Carocci A, Rovito N, Sinicropi MS, et al. Mercury toxicity and neurodegenerative effects[J]. Rev Environ Contam Toxicol, 2014, 229: 1-18.
doi: 10.1007/978-3-319-03777-6_1 pmid: 24515807 |
[4] | 冯永全, 耿雪, 胡静, 等. 28d灌胃给予氯化甲基汞对Wistar雌性大鼠免疫系统影响的研究[J]. 毒理学杂志, 2015, 29(2): 102-105. |
Feng YQ, Geng X, Hu J, et al. Immunotoxicity assessment of Methyl mercuty chloride in female rats after 28-day oral exposure[J]. Dulixue Zazhi, 2015, 29(2): 102-105. | |
[5] | 李玄, 王锐, 尹大强. 饮用水汞暴露对小鼠免疫系统的毒性[J]. 环境化学, 2014, 33(9): 1427-1432. |
Li X, Wang Y, Yin DQ. Immunotoxic effects of mercury exposure via drinking water[J]. Huanjing Huaxue, 2014, 33(9): 1427-1432. | |
[6] | 李倩, 郁馨纯, 张燕东, 等. 经饮水甲基汞对小鼠脾脏中成熟免疫细胞影响的时间-效应特征[J]. 环境与职业医学, 2017, 34(3): 264-720. |
Li Q, Yu XC, Zhang YD, et al. Time-effect features of methyl mercury exposure via drinking on mature immune cells in spleen of mice[J]. Huanjing Yu Zhiye Yixue, 2017, 34(3): 264-270. | |
[7] | Levin M, Jasperse L, Desforges JP, et al. Methyl mercury (MeHg) in vitro exposure alters mitogen-induced lymphocyte proliferation and cytokine expression in Steller sea lion (Eumetopias jubatus) pups[J]. Sci Total Environ, 2020, 725: 138308. |
[8] | Silva-Pereira LC, da Rocha CA, Cunha LR, et al. Protective effect of prolactin against methylmercury-induced mutagenicity and cytotoxicity on human lymphocytes[J]. Int J Environ Res Public Health, 2014, 11(9): 9822-9834. |
[9] | Zheng K, Zeng Z, Tian Q, et al. Epidemiological evidence for the effect of environmental heavy metal exposure on the immune system in children[J]. Sci Total Environ, 2023, 868: 161691. |
[10] | 冀军, 刘扬. 汞对免疫球蛋白IgG分子构象的体外研究[J]. 高分子通报, 2019, (8): 29-34. |
Ji J, Liu Y. In vitro Study of Mercury and Immunoglobulin IgG[J]. Gaofenzi Tongbao, 2019, (8): 29-34. | |
[11] | 宋文超. 铅、镉、汞对小鼠免疫毒性的研究[D]. 延边大学, 2018. |
Song WC. The immunotoxicity of lead, cadmiun and mercury in mice[D]. Yanbian Daxue, 2018. | |
[12] | Abu Zeid EH, Khalifa BA, Said EN, et al. Neurobehavioral and immune-toxic impairments induced by organic methyl mercury dietary exposure in Nile tilapia Oreochromis niloticus[J]. Aquat Toxicol, 2021, 230: 105702. |
[13] | Ahn H, Kim J, Kang SG, et al. Mercury and arsenic attenuate canonical and non-canonical NLRP3 inflam-masome activation[J]. Sci Rep, 2018, 8(1): 13659. |
[14] |
Hui LL, Chan MHM, Lam HS, et al. Impact of fetal and childhood mercury exposure on immune status in children[J]. Environ Res, 2016, 144(Pt A): 66-72.
doi: S0013-9351(15)30133-X pmid: 26562044 |
[15] |
Al-Mazroua HA, Nadeem A, Ansari MA, et al. Methy-lmercury chloride exposure exacerbates existing neurobehavioral and immune dysfunctions in the BTBR T(+) Itpr3(tf)/J mouse model of autism[J]. Immunol Lett, 2022, 244: 19-27.
doi: 10.1016/j.imlet.2022.03.001 pmid: 35259423 |
[16] | Ahmad SF, Bakheet SA, Ansari MA, et al. Methylmercury chloride exposure aggravates proinflammatory mediators and Notch-1 signaling in CD14(+) and CD40(+) cells and is associated with imbalance of neuroimmune function in BTBR T(+) Itpr3tf/J mice[J]. Neurotoxicology, 2021, 82: 9-17. |
[17] |
Yamamoto M, Khan N, Muniroh M, et al. Activation of interleukin-6 and -8 expressions by methylmercury in human U937 macrophages involves RelA and p50[J]. J Appl Toxicol, 2017, 37(5): 611-620.
doi: 10.1002/jat.3411 pmid: 27917510 |
[18] | Monastero RN, Vacchi-Suzzi C, Marsit C, et al. Expression of genes involved in stress, toxicity, inflammation, and autoimmunity in relation to cadmium, mercury, and lead in human blood: a pilot study[J]. Toxics, 2018, 6(3): 35. |
[19] |
Carruthers NJ, Rosenspire AJ, Caruso JA, et al. Low level Hg(2+) exposure modulates the B-cell cytoskeletal phosphoproteome[J]. J Proteomics, 2018, 173: 107-114.
doi: S1874-3919(17)30409-8 pmid: 29199152 |
[20] |
Caruso JA, Carruthers N, Shin N, et al. Mercury alters endogenous phosphorylation profiles of SYK in murine B cells[J]. BMC Immunol, 2017, 18(1): 37.
doi: 10.1186/s12865-017-0221-0 pmid: 28716125 |
[21] | Dupont A, De Pauw-Gillet MC, Schnitzler J, et al. Effects of methylmercury on harbour seal peripheral blood leucocytes in vitro studied by electron microscopy[J]. Arch Environ Contam Toxicol, 2016, 70(1): 133-142. |
[22] |
Migdal C, Foggia L, Tailhardat M, et al. Sensitization effect of thimerosal is mediated in vitro via reactive oxygen species and calcium signaling[J]. Toxicology, 2010, 274(1-3): 1-9.
doi: 10.1016/j.tox.2010.04.016 pmid: 20457211 |
[23] | Ren Z, Liu J, Huang W, et al. Antioxidant defenses and immune responses of flounder Paralichthys olivaceus larvae under methylmercury exposure[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2019, 225: 108589. |
[24] | Moniruzzaman M, Lee S, Park Y, et al. Evaluation of dietary selenium, vitamin C and E as the multi-antioxidants on the methylmercury intoxicated mice based on mercury bioaccumulation, antioxidant enzyme activity, lipid peroxidation and mitochondrial oxidative stress[J]. Chemosphere, 2021, 273: 129673. |
[25] | Benvenga S, Famà F, Perdichizzi LG, et al. Fish and the thyroid: a janus bifrons relationship caused by pollutants and the omega-3 polyunsaturated fatty acids[J]. Front Endocrinol (Lausanne), 2022, 13: 891233. |
[26] | Wei Y, Ni L, Pan J, et al. Methylmercury promotes oxidative stress and autophagy in rat cerebral cortex: involvement of PI3K/AKT/mTOR or AMPK/TSC2/mTOR pathways and attenuation by N-acetyl-L-cysteine[J]. Neurotoxicol Teratol, 2022, 95: 107137. |
[27] | Shinde A, Sharma R, Kumar P, et al. Combined effect of mercury and ammonia toxicity and its mitigation through selenium nanoparticles in fish[J]. Aquat Toxicol, 2025, 280: 107270. |
[28] | Alhusaini A, Alghilani S, Alhuqbani W, et al. Vitamin E and lactobacillus provide protective effects against liver injury induced by HgCl(2): role of CHOP, GPR87, and mTOR proteins[J]. Dose Response, 2021, 19(2): 15593258211011360. |
[29] | Shalan MG. Amelioration of mercuric chloride-induced physiologic and histopathologic alterations in rats using vitamin E and zinc chloride supplement[J]. Heliyon, 2022, 8(12): e12036. |
[30] |
Crowe W, Allsopp PJ, Nyland JF, et al. Inflammatory response following in vitro exposure to methylmercury with and without n-3 long chain polyunsaturated fatty acids in peripheral blood mononuclear cells from systemic lupus erythematosus patients compared to healthy controls[J]. Toxicol In Vitro, 2018, 52: 272-278.
doi: S0887-2333(18)30185-1 pmid: 29778720 |
[31] | Pollard KM, Cauvi DM, Toomey CB, et al. Mercury-induced inflammation and autoimmunity[J]. Biochim Biophys Acta Gen Subj, 2019, 1863(12): 129299. |
[32] | Yeter D, Deth R, Kuo HC. Mercury promotes cate-cholamines which potentiate mercurial autoimmunity and vasodilation: implications for inositol 1,4,5-triphosphate 3-kinase C susceptibility in kawasaki syndrome[J]. Korean Circ J, 2013, 43(9): 581-591. |
[33] |
Häggqvist B, Havarinasab S, Björn E, et al. The immunosuppressive effect of methylmercury does not preclude development of autoimmunity in genetically susceptible mice[J]. Toxicology, 2005, 208(1): 149-164.
pmid: 15664442 |
[34] | Chang LS, Yan JH, Li JY, et al. Blood mercury levels in children with Kawasaki disease and disease outcome[J]. Int J Environ Res Public Health, 2020, 17(10): 3762. |
[35] |
Yanai T, Yoshida S, Takeuchi M, et al. Association between maternal heavy metal exposure and Kawasaki disease, the Japan Environment and Children's Study (JECS)[J]. Sci Rep, 2024, 14(1): 9947.
doi: 10.1038/s41598-024-60830-z pmid: 38689029 |
[36] |
Bjørklund G, Dadar M, Aaseth J. Delayed-type hypersensitivity to metals in connective tissue diseases and fibromyalgia[J]. Environ Res, 2018, 161: 573-579.
doi: S0013-9351(17)31728-0 pmid: 29245125 |
[37] | Amirhosseini M, Alkaissi H, Hultman PA, et al. Autoantibodies in outbred Swiss Webster mice following exposure to gold and mercury[J]. Toxicol Appl Pharmacol, 2021, 412: 115379. |
[38] | Pamphlett R, Kum Jew S. Mercury is taken up selectively by cells involved in joint, bone, and connective tissue disorders[J]. Front Med (Lausanne), 2019, 6: 168. |
[39] | Kim KN, Bae S, Park HY, et al. Low-level mercury exposure and risk of asthma in school-age children[J]. Epidemiology, 2015, 26(5): 733-739. |
[40] | Smith AR, Lin PD, Rifas-Shiman SL, et al. Prenatal blood metals, per-and polyfluoroalkyl substances and antigen-or mitogen-stimulated cord blood lymphocyte proliferation and cytokine secretion[J]. Environ Res, 2024, 259: 119555. |
[41] | Lee JY, Choi YH, Choi HI, et al. Association between environmental mercury exposure and allergic disorders in Korean children: Korean National Environmental Health Survey (KoNEHS) cycles 3-4 (2015-2020)[J]. Sci Rep, 2024, 14(1): 1472. |
[42] | Shin J, Kim BM, Ha M, et al. The Association between mercury exposure and atopic dermatitis in early childhood: a mothers and children's environmental health study[J]. Epidemiology, 2019, 30 Suppl 1: S3-S8. |
[43] | Miyazaki J, Ikehara S, Tanigawa K, et al. Prenatal exposure to selenium, mercury, and manganese during pregnancy and allergic diseases in early childhood: the Japan environment and children's study[J]. Environ Int, 2023, 179: 108123. |
[44] | Carrasco P, Estarlich M, Iñiguez C, et al. Pre and postnatal exposure to mercury and respiratory health in preschool children from the Spanish INMA birth cohort study[J]. Sci Total Environ, 2021, 782: 146654. |
[45] |
Heinrich J, Guo F, Trepka MJ. Brief report: low-level mercury exposure and risk of asthma in school-age children[J]. Epidemiology, 2017, 28(1): 116-118.
pmid: 27755278 |
[46] | Wu KG, Chang CY, Yen CY, et al. Associations between environmental heavy metal exposure and childhood asthma: A population-based study[J]. J Microbiol Immunol Infect, 2019, 52(2): 352-362. |
[47] | Feiler MO, Kulick ER, Sinclair K, et al. Toxic metals and pediatric clinical immune dysfunction: A systematic review of the epidemiological evidence[J]. Sci Total Environ, 2024, 927: 172303. |
[48] | Zefferino R, Piccoli C, Ricciardi N, et al. Possible mechanisms of mercury toxicity and cancer promotion: involvement of gap junction intercellular communications and inflammatory cytokines[J]. Oxid Med Cell Longev, 2017, 2017: 7028583. |
[49] | Skalny AV, Aschner M, Sekacheva MI, et al. Mercury and cancer: Where are we now after two decades of research?[J]. Food Chem Toxicol, 2022, 164: 113001. |
[1] | ZHANG Wei, WANG Yang, DENG Wenhua, WU Yabin. Analysis of clinical manifestations, ciliary structure and genetic characteristics of primary ciliary dyskinesia in 14 children [J]. Journal of Clinical Pediatrics, 2025, 43(9): 680-685. |
[2] | XIANG Linjuan, CHEN Xuexin, JIA Yanhui, WU Yuhang, CONG Xin, LI Wei, CHEN Yingying, CHEN Sun, HUANG Lisu. Prognostic factors analysis of adenovirus type 3 pneumonia in children [J]. Journal of Clinical Pediatrics, 2025, 43(9): 686-691. |
[3] | WANG Jie, WU Bin, ZHANG Lannan, CHEN Kailan. Two cases of pediatric hepatosplenic T-cell lymphoma and literature review [J]. Journal of Clinical Pediatrics, 2025, 43(9): 698-704. |
[4] | YE Zehui, JIANG Xiaoli. A case report of sirolimus in the treatment of diffuse pulmonary lymphangiomatosis in children [J]. Journal of Clinical Pediatrics, 2025, 43(9): 705-709. |
[5] | DONG Suzhen, CHEN Hao, ZHANG Zhiyong, JIANG Fan. Applications of low field MRI in pediatrics and prenatal fetal diagnosis [J]. Journal of Clinical Pediatrics, 2025, 43(9): 710-715. |
[6] | SHI Xiaosong, FU Shijie, HE Xiaohua, LYU Hui, CHEN Houyang, CHEN Maolin, CHEN Jie. Antigenic genotypic characteristics and antibiotic resistance analysis of Bordetella pertussis in two regions of Fujian province [J]. Journal of Clinical Pediatrics, 2025, 43(8): 575-582. |
[7] | PEI Pei, LI Weihua, HUAI Wan, YAO Ruen, GE Hejia, WANG Jiwen, WANG Xiumin, JI Wei, ZHOU Yunqing, HE Yingzhong, HAN Feng. Genetic and clinical characteristics analysis of 10 children with ATP1A2/ATP1A3 gene variants [J]. Journal of Clinical Pediatrics, 2025, 43(8): 590-597. |
[8] | LI Heting, SUN Ruidi, JIANG Jun. Clinical features, prognosis and neurophysiological characteristics of children with acute anti-GQ1b antibody syndrome [J]. Journal of Clinical Pediatrics, 2025, 43(8): 604-609. |
[9] | ZHANG Cheng, CAO Qiaoyu, ZHENG Luyao, LI Ming, GE Hongsong. Retrospective analysis of clinical features, dermoscopic characteristics and prognosis of acquired facial hyperpigmented macules in 54 pediatric cases [J]. Journal of Clinical Pediatrics, 2025, 43(8): 610-614. |
[10] | Chinese Cooperative Group for the Management of Pediatric Enuresis Affiliated to Pediatric Nephrology Committee of Chinese Medical Doctor Association. Chinese expert consensus on management of nocturnal enuresis in children [J]. Journal of Clinical Pediatrics, 2025, 43(7): 483-499. |
[11] | WANG Yingshuo, CHEN Zhimin. Leveraging digital intelligence to enhance the diagnosis, treatment, and management of pediatric bronchial asthma [J]. Journal of Clinical Pediatrics, 2025, 43(7): 500-504. |
[12] | ZHAO Linchao, WANG Yingjie, JING Zhaohe, MAI Yumiao, SUN Pan, QIU Simin, NIU Hongyun, CHEN Zhiwei, DONG Pengpeng, LIU Jian. Analysis of the efficacy and prognosis of hematopoietic stem cell transplantation for inherited bone marrow failure syndrome in children [J]. Journal of Clinical Pediatrics, 2025, 43(7): 505-510. |
[13] | ZHANG Zhiqi, XIONG Ruolan, LI Bohan, JI Qi, WANG Qingwei, LU Jun, LI Jie, XIAO Peifang, HU Shaoyan. Construction of risk prediction model for primary graft failure after umbilical cord blood transplantation in pediatric leukemia [J]. Journal of Clinical Pediatrics, 2025, 43(7): 511-518. |
[14] | JIANG Wenwen, LI Sitong, XU Yongsheng. Analysis on risk factors associated with false-negative results of interferon-gamma release assay in children with pulmonary tuberculosis [J]. Journal of Clinical Pediatrics, 2025, 43(7): 519-524. |
[15] | LI Fan, HUANG Xianjie, FAN Yazhen, ZHAO Jianchuang, CUI Chenhang, GUO Qiliang, QIAO Junying. Tocilizumab treatment for febrile infection-related epilepsy syndrome in children: 2 cases report and literature review [J]. Journal of Clinical Pediatrics, 2025, 43(7): 532-538. |
|