[1] |
Uchida N, Shibata H, Nishimura G, et al. A novel mutation in the ACAN gene in a family with autosomal dominant short stature and intervertebral disc disease[J]. Hum Genome Var, 2020, 7(1): 44.
doi: 10.1038/s41439-020-00132-8
|
[2] |
Aza-Carmona M, Barca-Tierno V, Hisado-Oliva A, et al. NPPB and ACAN, two novel SHOX2 transcription targets implicated in skeletal development[J]. PloS One, 2014, 9(1): e83104.
doi: 10.1371/journal.pone.0083104
|
[3] |
Stattin EL, Wiklund F, Lindblom K, et al. A missense mutation in the aggrecan C-type lectin domain disrupts extracellular matrix interactions and causes dominant familial osteochondritis dissecans[J]. Am J Hum Genet, 2010, 86(2): 126-137.
doi: 10.1016/j.ajhg.2009.12.018
|
[4] |
Ye X, Fang D, He Y, et al. Dual diagnosis of osteogenesis imperfecta (OI) and short stature and advanced bone age with or without early-onset osteoarthritis and/or osteochondritis dissecans (SSOAOD) reveals a cumulative effect on stature caused by mutations in COL1A1 and ACAN genes[J]. Eur J Med Genet, 2020, 63(12): 104074.
doi: 10.1016/j.ejmg.2020.104074
|
[5] |
Faienza MF, Chiarito M, Brunetti G, et al. Growth plate gene involment and isolated short stature[J]. Endocrine, 2021, 71(1): 28-34.
doi: 10.1007/s12020-020-02362-w
|
[6] |
Perera RS, Dissanayake PH, Senarath U, et al. Variants of ACAN are associated with severity of lumbar disc herniation in patients with chronic low back pain[J]. PloS One, 2017, 12(7): e0181580.
doi: 10.1371/journal.pone.0181580
|
[7] |
Lauing KL, Cortes M, Domowicz MS, et al. Aggrecan is required for growth plate cytoarchitecture and differentiation[J]. Dev Biol, 2014, 396(2): 224-236.
doi: 10.1016/j.ydbio.2014.10.005
pmid: 25446537
|
[8] |
Wu H, Wang C, Yu S, et al. Downregulation of ACAN is associated with the growth hormone pathway and induces short stature[J]. J Clin Lab Anal, 2023, 37(2): e24830.
doi: 10.1002/jcla.v37.2
|
[9] |
Lv S, Zhao J, Liu L, et al. Exploring and expanding the phenotype and genotype diversity in seven Chinese families with spondylo-epi-metaphyseal dysplasia[J]. Front Genet, 2022, 13: 960504.
doi: 10.3389/fgene.2022.960504
|
[10] |
Dirani M, Cuenca VD, Romero VI. COL1A1 novel splice variant in osteogenesis imperfecta and splicing variants review: a case report[J]. Front Surg, 2022, 9: 986372.
doi: 10.3389/fsurg.2022.986372
|
[11] |
Rauch D, Robinson ME, Seiltgens C, et al. Assessment of longitudinal bone growth in osteogenesis imperfecta using metacarpophalangeal pattern profiles[J]. Bone, 2020, 140: 115547.
doi: 10.1016/j.bone.2020.115547
|
[12] |
Gremminger VL, Jeong Y, Cunningham RP, et al. Compromised exercise capacity and mitochondrial dysfunction in the osteogenesis imperfecta murine (oim) mouse model[J]. J Bone Miner Res, 2019, 34(9): 1646-1659.
doi: 10.1002/jbmr.3732
pmid: 30908713
|
[13] |
Guerin A, Dupuis L, Mendoza-Londono R. Caffey Disease[M/OL]// AdamMP, FeldmanJ, MirzaaGM, et al. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle, 1993—2023 [2023-08-14]. http://www.ncbi.nlm.nih.gov/books/NBK99168/.
|
[14] |
Deguchi M, Tsuji S, Katsura D, et al. Current overview of osteogenesis imperfect[J]. Medicina (Kaunas), 2021, 57(5): 464.
|
[15] |
Zheng WB, Li LJ, Zhao DC, et al. Novel variants in COL2A1 causing rare spondyloepiphyseal dysplasia congenita[J]. Mol Genet Genomic Med, 2020, 8(3): e1139.
doi: 10.1002/mgg3.v8.3
|
[16] |
Akahira-Azuma M, Enomoto Y, Nakamura N, et al. Novel COL2A1 variants in Japanese patients with spondyloepiphyseal dysplasia congenita[J]. Hum Genome Var, 2022, 9(1): 16.
doi: 10.1038/s41439-022-00193-x
pmid: 35581182
|
[17] |
Kong L, Shi L, Wang W, et al. Identification of two novel COL10A1 heterozygous mutations in two Chinese pedigrees with Schmid-type metaphyseal chondrodysplasia[J]. BMC Med Genet, 2019, 20(1): 200.
doi: 10.1186/s12881-019-0937-1
|
[18] |
Wu H, Wang S, Li G, et al. Characterization of a novel COL10A1 variant associated with Schmid-type metaphyseal chondrodysplasia and a literature review[J]. Mol Genet Genomic Med, 2021, 9(5): e1668.
doi: 10.1002/mgg3.v9.5
|
[19] |
Dennis EP, Greenhalgh-Maychell PL, Briggs MD. Multiple epiphyseal dysplasia and related disorders: molecular genetics, disease mechanisms, and therapeutic avenues[J]. Dev Dyn, 2021, 250(3): 345-359.
doi: 10.1002/dvdy.v250.3
|
[20] |
Scheiber AL, Wilkinson KJ, Suzuki A, et al. 4PBA reduces growth deficiency in osteogenesis imperfecta by enhancing transition of hypertrophic chondrocytes to osteoblasts[J]. JCI insight, 2022, 7(3): e149636.
doi: 10.1172/jci.insight.149636
|
[21] |
Plachy L, Dusatkova P, Maratova K, et al. Familial short stature-a novel phenotype of growth plate collagenopathies[J]. J Clin Endocrinol Metab, 2021, 106(6): 1742-1749.
doi: 10.1210/clinem/dgab084
pmid: 33570564
|
[22] |
Guo BB, Jin JY, Yuan ZZ, et al. A novel COMP mutated allele identified in a Chinese family with pseudoachondroplasia[J]. Biomed Res Int, 2021, 2021: 6678531.
|
[23] |
Forte-Gomez HF, Gioia R, Tonelli F, et al. Structure, evolution and expression of zebrafish cartilage oligomeric matrix protein (COMP, TSP5). CRISPR-Cas mutants show a dominant phenotype in myosepta[J]. Front Endocrinol (Lausanne), 2022, 13: 1000662.
doi: 10.3389/fendo.2022.1000662
|
[24] |
Li C, Wang N, Schäffer AA, et al. Mutations in COMP cause familial carpal tunnel syndrome[J]. Nat Commun, 2020, 11(1): 3642.
doi: 10.1038/s41467-020-17378-z
|
[25] |
Rochoux Q, Sopkova-de Oliveira Santos J, Marcelli C, et al. Description of joint alterations observed in a family carrying p.Asn453Ser COMP variant: clinical phenotypes, in silico prediction of functional impact on COMP protein and stability, and review of the literature[J]. Biomolecules, 2021, 11(10): 1460.
doi: 10.3390/biom11101460
|
[26] |
Weiner DS, Guirguis J, Makowski M, et al. Orthopaedic manifestations of pseudoachondroplasia[J]. J Child Orthop, 2019, 13(4): 409-416.
doi: 10.1302/1863-2548.13.190066
pmid: 31489048
|
[27] |
Briggs MD, Chapman KL. Pseudoachondroplasia and multiple epiphyseal dysplasia: mutation review, molecular interactions, and genotype to phenotype correlations[J]. Hum Mutat, 2002, 19(5): 465-478.
pmid: 11968079
|
[28] |
Jayasuriya CT, Goldring MB, Terek R, et al. Matrilin-3 induction of IL-1 receptor antagonist is required for up-regulating collagen Ⅱ and aggrecan and down-regulating ADAMTS-5 gene expression[J]. Arthritis Res Ther, 2012, 14(5): R197.
doi: 10.1186/ar4033
|
[29] |
Cotterill SL, Jackson GC, Leighton MP, et al. Multiple epiphyseal dysplasia mutations in MATN3 cause misfolding of the A-domain and prevent secretion of mutant matrilin-3[J]. Hum Mutat, 2005, 26(6): 557-565.
doi: 10.1002/humu.20263
pmid: 16287128
|
[30] |
Briggs MD, Bell PA, Pirog KA. The utility of mouse models to provide information regarding the pathomolecular mechanisms in human genetic skeletal diseases: the emerging role of endoplasmic reticulum stress (Review)[J]. Int J Mol Med, 2015, 35(6): 1483-1492.
doi: 10.3892/ijmm.2015.2158
pmid: 25824717
|
[31] |
Huang L, Xu T, Gan J, et al. Zonule-associated gene variants in isolated ectopia lentis and glaucoma[J]. J Glaucoma, 2023, 32(7): e80-e89.
doi: 10.1097/IJG.0000000000002209
|
[32] |
Haji-Seyed-Javadi R, Jelodari-Mamaghani S, Paylakhi SH, et al. LTBP2 mutations cause Weill-Marchesani and Weill-Marchesani-like syndrome and affect disruptions in the extracellular matrix[J]. Hum Mutat, 2012, 33(8): 1182-1187.
doi: 10.1002/humu.22105
pmid: 22539340
|
[33] |
Chen HX, Yang ZY, Hou HT, et al. Novel mutations of TCTN3/LTBP2 with cellular function changes in congenital heart disease associated with polydactyly[J]. J Cell Mol Med, 2020, 24(23): 13751-13762.
doi: 10.1111/jcmm.v24.23
|
[34] |
Cadoff EB, Sheffer R, Wientroub S, et al. Mechanistic insights into the cellular effects of a novel FN1 variant associated with a spondylometaphyseal dysplasia[J]. Clin Genet, 2018, 94(5): 429-437.
doi: 10.1111/cge.13424
pmid: 30051459
|
[35] |
Yang C, Wang C, Zhou J, et al. Fibronectin 1 activates WNT/β-catenin signaling to induce osteogenic differentiation via integrin β1 interaction[J]. Lab Invest, 2020, 100(12): 1494-1502.
doi: 10.1038/s41374-020-0451-2
|
[36] |
Sabir AH, Singhal J, Man J, et al. Automated reanalysis, a novel way to diagnose an ultra-rare condition: fibronectin-1-related spondylometaphyseal dysplasia (SMD-FN1)[J]. Clin Dysmorphol, 2021, 30(3): 154-158.
doi: 10.1097/MCD.0000000000000369
pmid: 33605604
|
[37] |
Shen R, Feng JH, Yang SP. Acromicric dysplasia caused by a mutation of fibrillin 1 in a family: a case report[J]. World J Clin Cases, 2023, 11(9): 2036-2042.
doi: 10.12998/wjcc.v11.i9.2036
pmid: 36998968
|
[38] |
Wang T, Yang Y, Dong Q, et al. Acromicric dysplasia with stiff skin syndrome-like severe cutaneous presentation in an 8-year-old boy with a missense FBN1 mutation: case report and literature review[J]. Mol Genet Genomic Med, 2020, 8(7): e1282.
doi: 10.1002/mgg3.v8.7
|
[39] |
Mortier GR, Cohn DH, Cormier-Daire V, et al. Nosology and classification of genetic skeletal disorders: 2019 revision[J]. Am J Med Genet A, 2019, 179(12): 2393-2419.
doi: 10.1002/ajmg.a.61366
pmid: 31633310
|
[40] |
Asgari S, Luo Y, Akbari A, et al. A positively selected FBN1 missense variant reduces height in Peruvian individuals[J]. Nature, 2020, 582(7811): 234-239.
doi: 10.1038/s41586-020-2302-0
|