[1] |
El-Gharbawy A, Jerry V. Inborn errors of metabolism with myopathy: defects of fatty acid oxidation and the carnitine shuttle system[J]. Pediatr Clin North Am, 2018, 65(2): 317-335.
doi: 10.1016/j.pcl.2017.11.006
|
[2] |
Touati G, Gorce M, Oliver-Petit I, et al. New inborn errors of metabolism added in the French program of neonatal screening[J]. Med Sci (Paris), 2021, 37(5): 507-518.
doi: 10.1051/medsci/2021057
pmid: 34003097
|
[3] |
Kapoor S, Thelma BK. Status of newborn screening and inborn errors of metabolism in India[J]. Indian J Pediatr, 2018, 85(12): 1110-1117.
doi: 10.1007/s12098-018-2681-5
pmid: 29736696
|
[4] |
Zhang R, Qiang R, Song C, et al. Spectrum analysis of inborn errors of metabolism for expanded newborn screening in a northwestern Chinese population[J]. Sci Rep, 2021, 11(1): 2699.
doi: 10.1038/s41598-021-81897-y
pmid: 33514801
|
[5] |
Longo N, Frigeni M, Pasquali M. Carnitine transport and fatty acid oxidation[J]. Biochim Biophys Acta, 2016, 1863(10): 2422-2435.
doi: 10.1016/j.bbamcr.2016.01.023
pmid: 26828774
|
[6] |
赵振东, 王洁, 谢曼芳, 等. 海南省少数民族自治市县原发性肉碱缺乏症筛查分析[J]. 中华检验医学杂志, 2019(4): 293-296.
|
[7] |
温英梅, 赵振东, 王洁. 海南省黎族新生儿原发性肉碱缺乏症筛查及基因情况分析[J]. 中国全科医学, 2020, 23(18): 2299-2303.
doi: 10.12114/j.issn.1007-9572.2020.00.293
|
[8] |
Ferreira CR, Rahman S, Keller M, et al. An international classification of inherited metabolic disorders (ICIMD)[J]. J Inherit Metab Dis, 2021, 44(1): 164-177.
doi: 10.1002/jimd.12348
pmid: 33340416
|
[9] |
Burlina AB, Polo G, Salviati L, et al. Newborn screening for lysosomal storage disorders by tandem mass spectrometry in North East Italy[J]. J Inherit Metab Dis, 2018, 41(2): 209-219.
doi: 10.1007/s10545-017-0098-3
pmid: 29143201
|
[10] |
Frigeni M, Balakrishnan B, Yin X, et al. Functional and molecular studies in primary carnitine deficiency[J]. Hum Mutat, 2017, 38(12): 1684-1699.
doi: 10.1002/humu.23315
pmid: 28841266
|
[11] |
Lin W, Wang K, Zheng Z, et al. Newborn screening for primary carnitine deficiency in Quanzhou, China[J]. Clin Chim Acta, 2021, 512: 166-171.
doi: 10.1016/j.cca.2020.11.005
pmid: 33181153
|
[12] |
Nowinski SM, Solmonson A, Rusin SF, et al. Mitochondrial fatty acid synthesis coordinates oxidative metabolism in mammalian mitochondria[J]. Elife, 2020, 9: e58041.
doi: 10.7554/eLife.58041
|
[13] |
Raud B, McGuire PJ, Jones RG, et al. Fatty acid metabolism in CD8+ T cell memory: challenging current concepts[J]. Immunol Rev, 2018, 283(1): 213-231.
doi: 10.1111/imr.2018.283.issue-1
|
[14] |
Wilcken B, Wiley V, Hammond J, et al. Screening newborns for inborn errors of metabolism by tandem mass spectrometry[J]. N Engl J Med, 2003, 348(23): 2304-2312.
doi: 10.1056/NEJMoa025225
|
[15] |
Feuchtbaum L, Carter J, Dowray S, et al. Birth prevalence of disorders detectable through newborn screening by race/ethnicity[J]. Genet Med, 2012, 14(11): 937-945.
doi: 10.1038/gim.2012.76
pmid: 22766612
|
[16] |
Lindner M, Gramer G, Haege G, et al. Efficacy and outcome of expanded newborn screening for metabolic diseases--report of 10 years from South-West Germany[J]. Orphanet J Rare Dis, 2011, 6: 44.
doi: 10.1186/1750-1172-6-44
pmid: 21689452
|
[17] |
la Marca G, Malvagia S, Casetta B, et al. Progress in expanded newborn screening for metabolic conditions by LC-MS/MS in Tuscany: update on methods to reduce false tests[J]. J Inherit Metab Dis, 2008, 31 (Suppl 2): S395-S404.
|
[18] |
Zhao Z, Chen C, Sun XS, et al. Newborn screening for inherited metabolic diseases using tandem mass spectrometry in China: outcome and cost-utility analysis[J]. J Med Screen, 2022, 29(1): 12-20.
doi: 10.1177/09691413211021621
|
[19] |
Sun F, Zhang JX, Yang CY, et al. The genetic characteristics of congenital hypothyroidism in China by comprehensive screening of 21 candidate genes[J]. Eur J Endocrinol, 2018, 178(6): 623-633.
doi: 10.1530/EJE-17-1017
pmid: 29650690
|
[20] |
Koizumi A, Nozaki J, Ohura T, et al. Genetic epidemiology of the carnitine transporter OCTN2 gene in a Japanese population and phenotypic characterization in Japanese pedigrees with primary systemic carnitine deficiency[J]. Hum Mol Genet, 1999, 8: 2247-2254.
pmid: 10545605
|
[21] |
Wilcken B, Wiley V, Sim KG, et al. Carnitine transporter defect diagnosed by newborn screening with electrospray tandem mass spectrometry[J]. J Pediatr, 2001, 138: 581-584.
doi: 10.1067/mpd.2001.111813
|
[22] |
Echaniz-Laguna A, Biancalana V, Gaignard P, et al. Primary carnitine deficiency in a 57-year-old patient with recurrent exertional rhabdomyolysis[J]. BMJ Case Rep, 2018, 2018: bcr2018224272.
|
[23] |
Jakoby M 4th, Jaju A, Marsh A, et al. Maternal primary carnitine deficiency and a novel solute carrier family 22 member 5 (SLC22A5) mutation[J]. J Investig Med High Impact Case Rep, 2021, 9: 23247096211019543.
|
[24] |
Lin Y, Zhang W, Huang C, et al. Increased detection of primary carnitine deficiency through second-tier newborn genetic screening[J]. Orphanet J Rare Dis, 2021, 16(1): 149.
doi: 10.1186/s13023-021-01785-6
pmid: 33757571
|
[25] |
Wang H, Wang X, Li Y, et al. Screening for inherited metabolic diseases using gas chromatography-tandem mass spectrometry (GC-MS/MS) in Sichuan, China[J]. Biomed Chromatogr, 2017, 31(4).
|
[26] |
Yang Q, Xu L, Tang LJ, et al. Simultaneous detection of multiple inherited metabolic diseases using GC-MS urinary metabolomics by chemometrics multi-class classification strategies[J]. Talanta, 2018, 186: 489-496.
doi: S0039-9140(18)30438-7
pmid: 29784392
|
[27] |
杨池菊, 史彩虹, 周成, 等. 山东省济宁地区新生儿脂肪酸氧化代谢病筛查及随访分析[J]. 浙江大学学报(医学版), 2021, 50(4): 472-480.
|