| [1] |
Ashorn P, Black RE, Lawn JE, et al. The Lancet Small Vulnerable Newborn Series: science for a healthy start[J]. Lancet, 2020, 396(10253): 743-745.
doi: S0140-6736(20)31906-1
pmid: 32919498
|
| [2] |
Ashorn P, Ashorn U, Muthiani Y, et al. Small vulnerable newborns-big potential for impact[J]. Lancet, 2023, 401(10389): 1692-1706.
doi: 10.1016/S0140-6736(23)00354-9
pmid: 37167991
|
| [3] |
Lawn JE, Ohuma EO, Bradley E, et al. Small babies, big risks: global estimates of prevalence and mortality for vulnerable newborns to accelerate change and improve counting[J]. Lancet, 2023, 401(10389): 1707-1719.
doi: 10.1016/S0140-6736(23)00522-6
pmid: 37167989
|
| [4] |
Hunter PJ, Awoyemi T, Ayede AI, et al. Biological and pathological mechanisms leading to the birth of a small vulnerable newborn[J]. Lancet, 2023, 401(10389): 1720-1732.
doi: 10.1016/S0140-6736(23)00573-1
pmid: 37167990
|
| [5] |
Hofmeyr GJ, Black RE, Rogozińska E, et al. Evidence-based antenatal interventions to reduce the incidence of small vulnerable newborns and their associated poor outcomes[J]. Lancet, 2023, 401(10389): 1733-1744.
doi: 10.1016/S0140-6736(23)00355-0
pmid: 37167988
|
| [6] |
蒋昊天, 陈超. 不同胎龄早产儿的生存状况及其变化趋势[J]. 中华围产医学杂志, 2024, 27(10): 865-870.
|
|
Jiang HT, Chen C. Survival status and trends of preterm infants of different gestational ages[J]. Zhonghua Weichan Yixue Zazhi, 2024, 27(10): 865-870.
|
| [7] |
Zhang YJ, Zhu Y, Zhu L, et al. Prevalence of preterm birth and risk factors associated with it at different gestational ages: a multicenter retrospective survey in China[J]. Saudi Med J, 2022, 43(6): 599-609.
|
| [8] |
Zhang YJ, Shen J, Lin SB, et al. The risk factors of preterm birth: A multicentre case-control survey in China in 2018[J]. J Paediatr Child Health, 2022, 58(8): 1396-1406.
|
| [9] |
中华医学会围产医学分会胎儿医学学组, 中华医学会妇产科学分会产科学组. 胎儿生长受限专家共识(2019版)[J]. 中华围产医学杂志, 2019, 22(6): 361-380.
|
|
Fetal Medicine Subgroup, Society of Perinatal Medicine, Chinese Medical Association, Obstetrics Subgroup, Society of Obstetrics and Gynecology, Chinese Medical Association. Expert consensus on fetal growth restriction[J]. Zhonghua Weichan Yixue Zazhi, 2019, 22(6): 361-380.
|
| [10] |
王昊, 漆洪波. 全球胎儿生长受限指南:求同存异[J]. 中华围产医学杂志, 2024, 27(9): 710-721.
|
|
Wang H, Qi HB. Global guidelines for fetal growth restriction: seeking common ground while respecting differences[J]. Zhonghua Weichan Yixue Zazhi, 2024, 27(9): 710-721.
|
| [11] |
Erchick DJ, Hazel EA, Katz J, et al. Vulnerable newborn types: analysis of subnational, population-based birth cohorts for 541 285 live births in 23 countries, 2000-2021[J]. BJOG, 2023. doi: 10.1111/1471-0528.17510.
|
| [12] |
Zhao Y, Jia Z, Wang L, et al. Trends in the incidence of high-risk newborns based on a new conceptual framework-Beijing municipality, China, 2013-2022 [J]. China CDC Wkly, 2024, 6(31): 767-771.
|
| [13] |
Perlman JM, Ashish KC. Small and vulnerable newborns the major driver of6unacceptable high neonatal mortality in low resource settings[J]. Acta Paediatrica, 2024, 113: 2406-2407.
|
| [14] |
Hazel EA, Erchick DJ, Katz J, et al. Neonatal mortality risk of vulnerable newborns: a descriptive analysis of subnational, population-based birth cohorts for 238 203 live births in low- and middle-income settings from 2000 to 2017[J]. BJOG, 2023. doi: 10.1111/1471-0528.17518.
|
| [15] |
Suárez-Idueta L, Blencowe H, Okwaraji YB, et al. Neonatal mortality risk for vulnerable newborn types in 15 countries using 125.5million nationwide birth outcome records, 2000-2020[J]. BJOG, 2023. doi: 10.1111/1471-0528.17506.
|
| [16] |
Zhu Z, Yuan L, Wang J, et al. Mortality and Morbidity of infants born extremely preterm at tertiary medical centers in China from 2010 to 2019[J]. JAMA Netw Open, 2021, 4(5): e219382.
|
| [17] |
Zhu Z, He Y, Yuan L, et al. Trends in bronchopulmonary dysplasia and respiratory support among extremely preterm infants in China over a decade[J]. Pediatr Pulmonol, 2024, 59(2): 399-407.
|
| [18] |
Lapehn S, Paquette AG. The Placental epigenome as a molecular link between prenatal exposures and fetal health outcomes through the DOHaD hypothesis[J]. Curr Environ Health Rep, 2022, 9(3): 490-501.
doi: 10.1007/s40572-022-00354-8
pmid: 35488174
|
| [19] |
Andonotopo W, Bachnas MA, Akbar MIA, et al. Fetal origins of adult disease: transforming prenatal care by integrating Barker's Hypothesis with AI-driven 4D ultrasound[J]. J Perinat Med, 2025, 53(4): 418-438.
|
| [20] |
Huicho L, Vidal-Cardenas E, Haapaniemi T, et al. Small vulnerable newborns: the urgent need of strong actions in Peru and the entire Latin America[J]. Lancet Reg Health Am, 2024, 34: 100748.
|
| [21] |
Malik H, Yazdani N, Kumari S, et al. Mapping neonatal vulnerability using the Small Vulnerable Newborn (SVN) framework-secondary analysis of PRISMA Pakistan study[J]. Lancet Reg Health Southeast Asia, 2025, 33: 100535.
|
| [22] |
Rocha AS, de Cassia Ribeiro-Silva R, Silva JFM, et al. Postnatal growth in small vulnerable newborns: a longitudinal study of 2 million Brazilians using routine register-based linked data[J]. Am J Clin Nutrition, 2024, 119: 444-455.
|
| [23] |
Jiang L, Him RL, Sihota D, et al. Supportive care for common conditions in small vulnerable newborns and term infants: the evidence[J]. Neonatology, 2025, 122(suppl 1): 129-151.
|
| [24] |
Wang D, Liu E, Perumal N, et al. The effects of prenatal multiple micronutrient supplementation and small-quantity lipid-based nutrient supplementation on small vulnerable newborn types in low-income and middle-income countries: a meta-analysis of individual participant data[J]. Lancet Glob Health, 2025, 13: e298-e308.
|