| [1] |
Ancel PY, Goffinet F, Kuhn P, et al. Survival and morbidity of preterm children born at 22 through 34 weeks' gestation in France in 2011: results of the EPIPAGE-2 cohort study[J]. JAMA Pediatr, 2015, 169(3): 230-238.
doi: 10.1001/jamapediatrics.2014.3351
|
| [2] |
何玥, 陈晓, 俎丽娇, 等. 2019—2023年CHNN出生胎龄<32周早产儿RDS临床救治及结局分析[J]. 中华儿科杂志, 2025, 63(8): 870-878.
|
|
He Y, Chen X, Zu LJ, et al. Clinical management and outcomes of respiratory distress syndrome in preterm infants <32 weeks’gestation from the Chinese Neonatal Network from 2019 to 2023[J]. Zhonghua Erke Zazhi, 2025, 63(8): 870-878.
|
| [3] |
De Luca D. Respiratory distress syndrome in preterm neonates in the era of precision medicine: a modern critical care-based approach[J]. Pediatr Neonatol, 2021, 62 Suppl 1: S3-S9.
|
| [4] |
Zeitlin J, Bonamy AE, Bonet M, et al. PS-047 tradeoffs between mortality and morbidity for very preterm infants: results from the Epice Cohort[J]. Arch Dis Child, 2014, 99(Suppl 2): A129.
|
| [5] |
De Luca D, Van Kaam AH, Tingay DG, et al. The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity[J]. Lancet Respir Med, 2017, 5(8): 657-666.
doi: 10.1016/S2213-2600(17)30214-X
pmid: 28687343
|
| [6] |
De Luca D, Tingay DG, Van Kaam AH, et al. Epidemiology of neonatal acute respiratory distress syndrome: Prospective, Multicenter, International Cohort study[J]. Pediatr Crit Care Med, 2022, 23(7): 524-534.
doi: 10.1097/PCC.0000000000002961
|
| [7] |
Sweet DG, Carnielli VP, Greisen G, et al. European Consensus Guidelines on the management of respiratory distress syndrome: 2022 update[J]. Neonatology, 2023, 120(1): 3-23.
doi: 10.1159/000528914
|
| [8] |
De Jaegere AP, Van Der Lee JH, Canté C, et al. Early prediction of nasal continuous positive airway pressure failure in preterm infants less than 30 weeks gestation[J]. Acta Paediatr, 2012, 101(4): 374-379.
doi: 10.1111/apa.2012.101.issue-4
|
| [9] |
Raimondi F, Dolce P, Veropalumbo C, et al. Inspired oxygen fraction thresholds to accurately predict surfactant administration in neonatal RDS is gestational age strata: a pragmatic,multi‐center study[J]. Pediatr Res, 2024, 59(6): 1638-1644.
|
| [10] |
中国医师协会新生儿科医师分会循证专业委员会. 容量目标通气模式在新生儿呼吸支持中的应用指南[J]. 中国循证医学杂志, 2022, 22(2): 125-133.
|
| [11] |
Fang SJ, Su CH, Liao DL, et al. Neurally adjusted ventilatory assist for rapid weaning in preterm infants[J]. Pediatr Int, 2023, 65(1): e15360.
doi: 10.1111/ped.v65.1
|
| [12] |
张艳, 李书芳, 蒋秀芳, 等. NAVA联合PS治疗新生儿呼吸窘迫综合征的临床疗效及对预后的影响分析[J]. 国际呼吸杂志, 2018, 38(6): 441-445.
|
|
Zhang Y, Li SF, Jiang XF, et al. Clinical effect of neurally adjusted ventilatory asist combined with pulmonary surfactant in the treatment of neonatal respiratory distress and its effect on prognosis[J]. Guoji Huxi Zazhi, 2018, 38(6): 441-445.
|
| [13] |
Henderson-Smart DJ, Bhuta T, Cools F, et al. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants[J]. Cochrane Database Syst Rev, 2000(2): Cd000104.
|
| [14] |
Yu X, Tan Q, Li J, et al. Elective high frequency oscillatory ventilation versus conventional mechanical ventilation on the chronic lung disease or death in preterm infants administered surfactant:a systematic review and meta-analysis[J]. J Perinatol, 2025, 45(1): 77-84.
doi: 10.1038/s41372-024-02185-x
|
| [15] |
Liu K, Chen L, Xiong J, et al. HFOV vs CMV for neonates with moderate-to-severe perinatal onset acute respiratory distress syndrome (NARDS): a propensity score analysis[J]. Eur J Pediatr, 2021, 180(7): 2155-2164.
doi: 10.1007/s00431-021-03953-z
pmid: 33638098
|
| [16] |
Yang MC, Hsu JF, Hsiao HF, et al. Use of high frequency oscillatory ventilator in neonates with respiratory failure:the clinical practice in Taiwan and early multimodal outcome prediction[J]. Sci Rep, 2020, 10(1): 6603.
doi: 10.1038/s41598-020-63655-8
|
| [17] |
Tao M, Yan L, Hu Y, et al. The effects of HFOV-VG vs HFOV on bronchopulmonary dysplasia and neurobehavioral development in preterm infants with perinatal acute respiratory distress syndrome[J]. Int J Gen Med, 2025, 18: 4695-4708.
doi: 10.2147/IJGM.S534091
pmid: 40894443
|
| [18] |
Zheng YR, Xie WP, Liu JF, et al. Impact of high-frequency oscillatory ventilation combined with volume guarantee on lung inflammatory response in infants with acute respiratory distress syndrome after congenital heart surgery: a randomized controlled trial[J]. J Cardiothorac Vasc Anesth, 2022, 36(8 Pt A): 2368-2375.
doi: 10.1053/j.jvca.2021.10.012
|
| [19] |
Liu W, Zong H, Jiang J, et al. High-frequency oscillatory ventilation with volume guarantee in infants: a systematic review[J]. Pediatr Res, 2025, 98(2): 470-478.
doi: 10.1038/s41390-025-03934-0
pmid: 40113997
|
| [20] |
Tingay DG, Dahm SI, Sett A. Are we ready for volume targeting during high-frequency oscillatory ventilation in neonates?[J]. Pediatr Res, 2025, 98(2): 354-356.
doi: 10.1038/s41390-025-04015-y
pmid: 40097824
|
| [21] |
张志刚, 张家杰, 夏晓芹, 等. nIPPV序贯通气在新生儿肺炎早期撤机方案中的应用研究[J]. 国际医药卫生导报, 2020, 26(23): 3564-3566.
|
|
Zhang ZG, Zhang JJ, Xia XQ, et al. Clinical study on the optimal weaning time in NIPPV sequential mechanical ventilation treatment for neonatal pneumonia[J]. Guoji Yiyao Weisheng Daobao, 2020, 26(23): 3564-3566.
|
| [22] |
Chen L, Wang L, Ma J, et al. Nasal high-frequency oscillatory ventilation in preterm infants with respiratory distress syndrome and ARDS after extubation: a randomized controlled trial[J]. Chest, 2019, 155(4): 740-748.
doi: S0012-3692(19)30065-0
pmid: 30955572
|
| [23] |
Zhu X, Qi H, Feng Z, et al. Noninvasive high-frequency oscillatory ventilation vs nasal continuous positive airway pressure vs nasal intermittent positive pressure ventilation as postextubation support for preterm neonates in China: a randomized clinical trial[J]. JAMA Pediatr, 2022, 176(6): 551-559.
doi: 10.1001/jamapediatrics.2022.0710
pmid: 35467744
|
| [24] |
师红可, 梁克令, 安丽花, 等. 无创高频振荡通气与经鼻间歇正压通气作为早产儿拔管后呼吸支持疗效比较的Meta分析[J]. 中国当代儿科杂志, 2023, 25(3): 295-301.
|
|
Shi HK, Liang KL, An LH, et al. Efficacy of noninvasive high-frequency oscillatory ventilation versus nasal intermittent positive pressure ventilation as post-extubation respiratory support in preterm infants: a Meta analysis[J]. Zhongguo Dangdai Erke Zazhi, 2023, 25(3): 295-301.
|
| [25] |
Chen J, Lin Y, Du L, et al. The comparison of HHHFNC and NCPAP in extremely low-birth-weight preterm infants after extubation: a single-center pandomized controlled trial[J]. Front Pediatr, 2020, 8: 250.
doi: 10.3389/fped.2020.00250
pmid: 32670991
|
| [26] |
张国英, 郑静, 王晓蕾, 等. 有创-无创序贯性通气治疗新生儿呼吸衰竭的临床研究[J]. 中国小儿急救医学, 2007, 14(5): 400-403.
|
|
Zhang GY, Zheng J, Wang XL, et al. Sequential invasive-noninvasive mechanical ventilation in neonatal respiratory failure[J]. Zhongguo Xiaoer Jijiu Yixue, 2007, 14(5): 400-403.
|
| [27] |
Shi Y, Muniraman H, Biniwale M, et al. A review on non-invasive respiratory support for management of respiratory distress in extremely preterm infants[J]. Front Pediatr, 2020, 8: 270.
doi: 10.3389/fped.2020.00270
pmid: 32548084
|
| [28] |
Yuan Y, He F, Wu D, et al. Non-invasive neurally adjusted ventilatory assist versus nasal continuous positive airway pressure for premature infants: a systematic review and meta-analysis[J]. Eur J Med Res, 2025, 30(1): 577.
doi: 10.1186/s40001-025-02803-0
pmid: 40618138
|
| [29] |
Matlock DN, Ratcliffe SJ, Courtney SE, et al. The Diaphragmatic Initiated Ventilatory Assist (DIVA) trial: study protocol for a randomized controlled trial comparing rates of extubation failure in extremely premature infants undergoing extubation to non-invasive neurally adjusted ventilatory assist versus non-synchronized nasal intermittent positive pressure ventilation[J]. Trials, 2024, 25(1): 201.
doi: 10.1186/s13063-024-08038-4
pmid: 38509583
|
| [30] |
Li Y, Zhu X, Li LJ, et al. Non-invasive high frequency oscillatory ventilation for primary respiratory support in extremely preterm infants:multicentre randomised controlled trial[J]. BMJ, 2025, 391(6): e085569.
doi: 10.1136/bmj-2025-085569
|