百日咳病原新认识及其抗感染策略
网络出版日期: 2024-06-07
New insights into the pathogen of pertussis and strategies for antibacterial infection
Online published: 2024-06-07
百日咳是由百日咳鲍特菌感染引起的急性呼吸道传染病,本病历史悠久,任何年龄段的人群均可感染发病。百日咳再现已成为引起高度关注的全球性问题,包括我国在内。2022年起至今,我国报告百日咳病例数上升迅猛。当前百日咳鲍特菌流行株的主要抗原(百日咳毒素)的基因型已发生改变,相应抗原与疫苗株不同而产生免疫逃逸,是当前百日咳再现的重要原因之一。百日咳鲍特菌目前普遍对大环内酯类抗生素耐药是临床治疗失败的重要原因,因此不再推荐其作为百日咳抗感染治疗的首选用药。2月龄以上无磺胺禁忌症的患儿,百日咳卡他期和痉咳期推荐复方磺胺甲噁唑口服作为首选抗感染方案;对2月龄以下或症状危重的患儿,推荐哌拉西林或头孢哌酮-舒巴坦静滴治疗。改良或研发与流行株抗原一致的新一代百日咳疫苗将是提升易感人群免疫保护力、控制本病流行的长远策略。
华春珍 , 王传清 , 杨章女 , 黄丽素 . 百日咳病原新认识及其抗感染策略[J]. 临床儿科杂志, 2024 , 42(6) : 480 -484 . DOI: 10.12372/jcp.2024.24e0513
Pertussis is an acute respiratory infectious disease caused by Bordetella pertussis, which has a long history and can affect people of all ages. The re-emergence of pertussis has become a global issue of great concern, including in China. Since 2022, the number of whooping cough cases reported in China has increased rapidly. The genotype of the main antigen (pertussis toxin) of the current Bordetella pertussis epidemic strain has changed, and the corresponding antigen is different from the vaccine strain, resulting in immune escape, which is one of the important reasons for the recurrence of pertussis. At present, the resistance of Bordetella pertussis to macrolide antibiotics is an important reason for clinical treatment failure, so it is no longer recommended as the first choice for anti-infection treatment of pertussis. For children over 2 months of age with no contraindications to sulfanilamide, trimethoprim-sulfamethoxazole oral administration is recommended as the preferred anti-infection regimen for pertussis catarrhal stage and spasmodic cough stage. Piperacillin or cefoperazone-sulbactam are recommended for children under 2 months of age or with critical symptoms. The improvement or development of a new generation of pertussis vaccine with the same antigen as the prevalent strain will be a long-term strategy to enhance the immune protection of the susceptible population and control the epidemic of the disease.
Key words: pertussis; reappear; immune escape; macrolide antibiotics; vaccine
[1] | Winter K, Zipprich J, Harriman K, et al. Risk factors associated with infant deaths from pertussis: a case-control study[J]. Clin Infect Dis, 2015, 61(7): 1099-1106. |
[2] | Guiso N, Meade BD, Wirsing Von K?nig CH. Pertussis vaccines: the first hundred years[J]. Vaccine, 2020, 38(5): 1271-1276. |
[3] | Cherry JD. Historical review of pertussis and the classical vaccine[J]. J Infect Dis, 1996, 174(Suppl 3): S259-S263. |
[4] | Decker MD, Edwards KM. Pertussis (Whooping Cough)[J]. J Infect Dis, 2021, 224(12 Suppl 2): S310-S320. |
[5] | Centers for Disease Control and Prevention CDC. Resurgence of pertussis--United States, 1993[J]. MMWR Morb Mortal Wkly Rep, 1993, 42(49): 952-953. |
[6] | Yeung KHT, Duclos P, Nelson EAS, et al. An update of the global burden of pertussis in children younger than 5 years: a modelling study[J]. Lancet Infect Dis, 2017, 17(9): 974-980. |
[7] | 王增国, 马超锋, 闫永平. 全球百日咳重现及中国百日咳相关研究现状[J]. 中国疫苗和免疫, 2016, 22(3): 345-349. |
[8] | Yu J, He H, Zhang Y, et al. Burden of whooping cough in China (PertussisChina): study protocol of a prospective, population-based case-control study[J]. BMJ Open, 2022, 12(3): e053316. |
[9] | 国家卫生健康委. 2022年我国卫生健康事业发展统计公报[EB/OL]. [2024-05-20]. http://www.nhc.gov.cn/cms-search/downFiles/8a3994e41d944f589d914c589a702592.pdf. |
[10] | 邬文婧, 邹映雪. 百日咳毒素的研究进展[J]. 国际儿科学杂志, 2020, 47(5): 312-316. |
[11] | Carbonetti NH. Contribution of pertussis toxin to the pathogenesis of pertussis disease[J]. Pathog Dis, 2015, 73(8): ftv073. |
[12] | Bridel S, Bouchez V, Brancotte B, et al. A comprehensive resource for Bordetella genomic epidemiology and biodiversity studies[J]. Nat Commun, 2022, 13(1): 3807. |
[13] | Fu P, Zhou J, Meng J, et al. Emergence and spread of MT28 ptxP3 allele macrolide-resistant Bordetella pertussis from 2021 to 2022 in China[J]. Int J Infect Dis, 2023, 128: 205-211. |
[14] | Petersen RF, Dalby T, Dragsted DM, et al. Temporal trends in Bordetella pertussis populations, Denmark, 1949-2010 [J]. Emerg Infect Dis, 2012, 18 (5): 767-774. |
[15] | King AJ, van der Lee S, Mohangoo A et al. Genome-wide gene expression analysis of Bordetella pertussis isolates associated with a resurgence in pertussis: elucidation of factors involved in the increased fitness of epidemic strains[J]. PLoS One, 2013; 8(6): e66150. |
[16] | Payne M, Xu Z, Hu D, et al. Genomic epidemiology and multilevel genome typing of Bordetella pertussis[J]. Emerg Microbes Infect, 2023, 12(2): 2239945. |
[17] | Centers for Disease Control and Prevention (CDC). Erythromycin-resistant Bordetella pertussis--Yuma County, Arizona, May-October 1994[J]. MMWR Morb Mortal Wkly Rep, 1994, 43(44): 807-810. |
[18] | L?nnqvist E, Barkoff AM, Mertsola J, et al. Antimicrobial susceptibility testing of Finnish Bordetella pertussis isolates collected during 2006-2017[J]. J Glob Antimicrob Resist, 2018, 14: 12-16. |
[19] | Yang Y, Yao K, Ma X, et al. Variation in Bordetella pertussis susceptibility to erythromycin and virulence-related genotype changes in China (1970-2014)[J]. PLoS One, 2015, 10(9): e0138941. |
[20] | Zhang Q, Li M, Wang L, et al. High-resolution melting analysis for the detection of two erythromycin-resistant Bordetella pertussis strains carried by healthy schoolchildren in China[J]. Clin Microbiol Infect, 2013, 19(6): E260-E262. |
[21] | Hua CZ, Wang HJ, Zhang Z, et al. In vitro activity and clinical efficacy of macrolides, cefoperazone-sulbactam and piperacillin/piperacillin-tazobactam against Bordetella pertussis and the clinical manifestations in pertussis patients due to these isolates: a single-centre study in Zhejiang Province, China[J]. J Glob Antimicrob Resist, 2019, 18: 47-51. |
[22] | Fu P, Wang C, Tian H, et al. Bordetella pertussis infection in infants and young children in Shanghai, China, 2016-2017: clinical features, genotype variations of antigenic genes and macrolides resistance[J]. Pediatr Infect Dis J, 2019, 38(4): 370-376. |
[23] | Fu P, Zhou J, Yang C, et al. Molecular evolution and increasing macrolide resistance of Bordetella pertussis, Shanghai, China, 2016-2022 [J]. Emerg Infect Dis, 2023, 30(1):29-38. |
[24] | Yao K, Deng J, Ma X, et al. The epidemic of erythromycin-resistant Bordetella pertussis with limited genome variation associated with pertussis resurgence in China[J]. Expert Rev Vaccines, 2020, 19(11): 1093-1099. |
[25] | Cimolai N. Pharmacotherapy for Bordetella pertussis infection. I. A synthesis of laboratory sciences[J]. Int J Antimicrob Agents, 2021, 57(3):106258. |
[26] | Cimolai N. Pharmacotherapy for Bordetella pertussis infection. II. A synthesis of clinical sciences[J]. Int J Antimicrob Agents, 2021, 57(3):106257. |
[27] | Mi YM, Hua CZ, Fang C, et al. Effect of macrolides and β-lactams on clearance of Bordetella pertussis in the nasopharynx in children with whooping cough[J]. Pediatr Infect Dis J, 2021, 40(2): 87-90. |
[28] | Bartkus JM, Juni BA, Ehresmann K, et al. Identification of a mutation associated with erythromycin resistance in Bordetella pertussis: implications for surveillance of antimicrobial resistance[J]. J Clin Microbiol, 2003, 41(3):1167-1172. |
[29] | Wang Z, Han R, Liu Y, et al. Direct Detection of erythromycin-resistant Bordetella pertussis in clinical specimens by PCR[J]. J Clin Microbiol, 2015, 53(11): 3418-3422. |
[30] | 中华医学会感染病学分会儿科感染学组, 国家卫生健康委能力建设和继续教育儿科专委会感染组, 中国临床实践指南联盟方法学专委会, 等. 中国百日咳诊疗与预防指南(2024版)[J]. 中华医学杂志, 2024, 104(15): 1258-1279. |
[31] | Lin LN, Zhou JS, Hua CZ, et al. Epidemiological and clinical characteristics of pertussis in children and their close contacts in households: a cross-sectional survey in Zhejiang Province, China[J]. Front Pediatr, 2022, 10: 976796. |
/
〈 |
|
〉 |