[1] |
Winter K, Zipprich J, Harriman K, et al. Risk factors associated with infant deaths from pertussis: a case-control study[J]. Clin Infect Dis, 2015, 61(7): 1099-1106.
doi: 10.1093/cid/civ472
pmid: 26082502
|
[2] |
Guiso N, Meade BD, Wirsing Von König CH. Pertussis vaccines: the first hundred years[J]. Vaccine, 2020, 38(5): 1271-1276.
doi: S0264-410X(19)31545-2
pmid: 31780181
|
[3] |
Cherry JD. Historical review of pertussis and the classical vaccine[J]. J Infect Dis, 1996, 174(Suppl 3): S259-S263.
|
[4] |
Decker MD, Edwards KM. Pertussis (Whooping Cough)[J]. J Infect Dis, 2021, 224(12 Suppl 2): S310-S320.
|
[5] |
Centers for Disease Control and Prevention CDC. Resurgence of pertussis--United States, 1993[J]. MMWR Morb Mortal Wkly Rep, 1993, 42(49): 952-953.
|
[6] |
Yeung KHT, Duclos P, Nelson EAS, et al. An update of the global burden of pertussis in children younger than 5 years: a modelling study[J]. Lancet Infect Dis, 2017, 17(9): 974-980.
doi: S1473-3099(17)30390-0
pmid: 28623146
|
[7] |
王增国, 马超锋, 闫永平. 全球百日咳重现及中国百日咳相关研究现状[J]. 中国疫苗和免疫, 2016, 22(3): 345-349.
|
[8] |
Yu J, He H, Zhang Y, et al. Burden of whooping cough in China (PertussisChina): study protocol of a prospective, population-based case-control study[J]. BMJ Open, 2022, 12(3): e053316.
|
[9] |
国家卫生健康委. 2022年我国卫生健康事业发展统计公报[EB/OL]. [2024-05-20]. http://www.nhc.gov.cn/cms-search/downFiles/8a3994e41d944f589d914c589a702592.pdf.
|
[10] |
邬文婧, 邹映雪. 百日咳毒素的研究进展[J]. 国际儿科学杂志, 2020, 47(5): 312-316.
|
[11] |
Carbonetti NH. Contribution of pertussis toxin to the pathogenesis of pertussis disease[J]. Pathog Dis, 2015, 73(8): ftv073.
|
[12] |
Bridel S, Bouchez V, Brancotte B, et al. A comprehensive resource for Bordetella genomic epidemiology and biodiversity studies[J]. Nat Commun, 2022, 13(1): 3807.
|
[13] |
Fu P, Zhou J, Meng J, et al. Emergence and spread of MT28 ptxP3 allele macrolide-resistant Bordetella pertussis from 2021 to 2022 in China[J]. Int J Infect Dis, 2023, 128: 205-211.
|
[14] |
Petersen RF, Dalby T, Dragsted DM, et al. Temporal trends in Bordetella pertussis populations, Denmark, 1949-2010 [J]. Emerg Infect Dis, 2012, 18 (5): 767-774.
doi: 10.3201/eid1805.110812
pmid: 22515990
|
[15] |
King AJ, van der Lee S, Mohangoo A et al. Genome-wide gene expression analysis of Bordetella pertussis isolates associated with a resurgence in pertussis: elucidation of factors involved in the increased fitness of epidemic strains[J]. PLoS One, 2013; 8(6): e66150.
|
[16] |
Payne M, Xu Z, Hu D, et al. Genomic epidemiology and multilevel genome typing of Bordetella pertussis[J]. Emerg Microbes Infect, 2023, 12(2): 2239945.
|
[17] |
Centers for Disease Control and Prevention (CDC). Erythromycin-resistant Bordetella pertussis--Yuma County, Arizona, May-October 1994[J]. MMWR Morb Mortal Wkly Rep, 1994, 43(44): 807-810.
|
[18] |
Lönnqvist E, Barkoff AM, Mertsola J, et al. Antimicrobial susceptibility testing of Finnish Bordetella pertussis isolates collected during 2006-2017[J]. J Glob Antimicrob Resist, 2018, 14: 12-16.
doi: S2213-7165(18)30040-7
pmid: 29486357
|
[19] |
Yang Y, Yao K, Ma X, et al. Variation in Bordetella pertussis susceptibility to erythromycin and virulence-related genotype changes in China (1970-2014)[J]. PLoS One, 2015, 10(9): e0138941.
|
[20] |
Zhang Q, Li M, Wang L, et al. High-resolution melting analysis for the detection of two erythromycin-resistant Bordetella pertussis strains carried by healthy schoolchildren in China[J]. Clin Microbiol Infect, 2013, 19(6): E260-E262.
|
[21] |
Hua CZ, Wang HJ, Zhang Z, et al. In vitro activity and clinical efficacy of macrolides, cefoperazone-sulbactam and piperacillin/piperacillin-tazobactam against Bordetella pertussis and the clinical manifestations in pertussis patients due to these isolates: a single-centre study in Zhejiang Province, China[J]. J Glob Antimicrob Resist, 2019, 18: 47-51.
|
[22] |
Fu P, Wang C, Tian H, et al. Bordetella pertussis infection in infants and young children in Shanghai, China, 2016-2017: clinical features, genotype variations of antigenic genes and macrolides resistance[J]. Pediatr Infect Dis J, 2019, 38(4): 370-376.
|
[23] |
Fu P, Zhou J, Yang C, et al. Molecular evolution and increasing macrolide resistance of Bordetella pertussis, Shanghai, China, 2016-2022 [J]. Emerg Infect Dis, 2023, 30(1):29-38.
|
[24] |
Yao K, Deng J, Ma X, et al. The epidemic of erythromycin-resistant Bordetella pertussis with limited genome variation associated with pertussis resurgence in China[J]. Expert Rev Vaccines, 2020, 19(11): 1093-1099.
|
[25] |
Cimolai N. Pharmacotherapy for Bordetella pertussis infection. I. A synthesis of laboratory sciences[J]. Int J Antimicrob Agents, 2021, 57(3):106258.
|
[26] |
Cimolai N. Pharmacotherapy for Bordetella pertussis infection. II. A synthesis of clinical sciences[J]. Int J Antimicrob Agents, 2021, 57(3):106257.
|
[27] |
Mi YM, Hua CZ, Fang C, et al. Effect of macrolides and β-lactams on clearance of Bordetella pertussis in the nasopharynx in children with whooping cough[J]. Pediatr Infect Dis J, 2021, 40(2): 87-90.
|
[28] |
Bartkus JM, Juni BA, Ehresmann K, et al. Identification of a mutation associated with erythromycin resistance in Bordetella pertussis: implications for surveillance of antimicrobial resistance[J]. J Clin Microbiol, 2003, 41(3):1167-1172.
doi: 10.1128/JCM.41.3.1167-1172.2003
pmid: 12624047
|
[29] |
Wang Z, Han R, Liu Y, et al. Direct Detection of erythromycin-resistant Bordetella pertussis in clinical specimens by PCR[J]. J Clin Microbiol, 2015, 53(11): 3418-3422.
|
[30] |
中华医学会感染病学分会儿科感染学组, 国家卫生健康委能力建设和继续教育儿科专委会感染组, 中国临床实践指南联盟方法学专委会, 等. 中国百日咳诊疗与预防指南(2024版)[J]. 中华医学杂志, 2024, 104(15): 1258-1279.
|
[31] |
Lin LN, Zhou JS, Hua CZ, et al. Epidemiological and clinical characteristics of pertussis in children and their close contacts in households: a cross-sectional survey in Zhejiang Province, China[J]. Front Pediatr, 2022, 10: 976796.
|