[1] |
Yang Y, Li X, Yang Y, et al. Advances in the relationships between cow’s milk protein allergy and gut microbiota in infants[J]. Front Microbiol, 2021, 12: 716667.
doi: 10.3389/fmicb.2021.716667
|
[2] |
Ho HE, Bunyavanich S. Role of the microbiome in food allergy[J]. Curr Allergy Asthma Rep, 2018, 18(4): 27.
doi: 10.1007/s11882-018-0780-z
|
[3] |
Berni Canani R, De Filippis F, Nocerino R, et al. Gut microbiota composition and butyrate production in children affected by non-IgE-mediated cow's milk allergy[J]. Sci Rep, 2018, 8(1): 12500.
doi: 10.1038/s41598-018-30428-3
pmid: 30131575
|
[4] |
Mauras A, Wopereis H, Yeop I, et al. Gut microbiota from infant with cow's milk allergy promotes clinical and immune features of atopy in a murine model[J]. Allergy, 2019, 74(9): 1790-1793.
doi: 10.1111/all.13787
pmid: 30887528
|
[5] |
Stewart CJ, Ajami NJ, O’brien JL, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study[J]. Nature, 2018, 562(7728):583-588.
doi: 10.1038/s41586-018-0617-x
|
[6] |
Bunyavanich S, Shen N, Grishin A, et al. Early-life gut microbiome composition and milk allergy resolution[J]. J Allergy Clin Immunol, 2016, 138(4): 1122-1130.
doi: S0091-6749(16)30268-8
pmid: 27292825
|
[7] |
Venter C, Brown T, Meyer R, et al. Better recognition, diagnosis and management of non-IgE-mediated cow’s milk allergy in infancy: iMAP-an international interpretation of the MAP (Milk Allergy in Primary Care) guideline[J]. Clin Transl Allergy, 2017, 7: 26.
doi: 10.1186/s13601-017-0162-y
|
[8] |
Fox A, Brown T, Walsh J, et al. An update to the Milk Allergy in Primary Care guideline[J]. Clin Transl Allergy, 2019, 9: 40.
doi: 10.1186/s13601-019-0281-8
pmid: 31413823
|
[9] |
李在玲, 龚四堂. 食物过敏相关消化道疾病诊断与管理专家共识[J]. 中华儿科杂志, 2017, 55(07): 487-492.
|
[10] |
中华预防医学会过敏疾病预防与控制专业委员会预防食物药物过敏学组. 口服食物激发试验标准化流程专家共识[J]. 中国全科医学, 2018, 21(27): 3281-3284.
|
[11] |
Shu SA, Yuen AWT, Woo E, et al. Microbiota and food allergy[J]. Clin Rev Allergy Immunol, 2019, 57(1):83-97.
doi: 10.1007/s12016-018-8723-y
|
[12] |
Weström B, Arévalo Sureda E, Pierzynowska K, et al. The immature gut barrier and its importance in establishing immunity in newborn mammals[J]. Front Immunol, 2020, 11: 1153.
doi: 10.3389/fimmu.2020.01153
pmid: 32582216
|
[13] |
Roswall J, Olsson LM, Kovatcheva-Datchary P, et al. Developmental trajectory of the healthy human gut microbiota during the first 5 years of life[J]. Cell Host Microbe, 2021, 29(5): 765-776.
doi: 10.1016/j.chom.2021.02.021
pmid: 33794185
|
[14] |
Aparicio M, Alba C, Cam Public Health Area P, et al. Microbiological and immunological markers in milk and infant feces for common gastrointestinal disorders: a pilot study[J]. Nutrients, 2020, 12(3):634.
doi: 10.3390/nu12030634
|
[15] |
Berni Canani R, Sangwan N, Stefka AT, et al. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants[J]. Isme J, 2016, 10(3): 742-750.
doi: 10.1038/ismej.2015.151
pmid: 26394008
|
[16] |
Bui TPN, Mannerås-Holm L, Puschmann R, et al. Conversion of dietary inositol into propionate and acetate by commensal Anaerostipes associates with host health[J]. Nat Commun, 2021, 12(1): 4798.
doi: 10.1038/s41467-021-25081-w
pmid: 34376656
|
[17] |
Chen Z, Radjabzadeh D, Chen L, et al. Association of insulin resistance and type 2 diabetes with gut microbial diversity: a microbiome-wide analysis from population studies[J]. JAMA Netw Open, 2021, 4(7): e2118811.
doi: 10.1001/jamanetworkopen.2021.18811
|
[18] |
Zheng L, Kelly CJ, Battista KD, et al. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2[J]. J Immunol, 2017, 199(8): 2976-2984.
doi: 10.4049/jimmunol.1700105
pmid: 28893958
|
[19] |
Jin UH, Cheng Y, Park H, et al. Short chain fatty acids enhance aryl hydrocarbon (Ah) responsiveness in mouse colonocytes and caco-2 human colon cancer cells[J]. Sci Rep, 2017, 7(1): 10163.
doi: 10.1038/s41598-017-10824-x
|
[20] |
Goverse G, Molenaar R, Macia L, et al. Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells[J]. J Immunol, 2017, 198(5): 2172-2181.
doi: 10.4049/jimmunol.1600165
pmid: 28100682
|
[21] |
Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2013, 504(7480): 446-450.
doi: 10.1038/nature12721
|
[22] |
Tun HM, Konya T, Takaro TK, et al. Exposure to household furry pets influences the gut microbiota of infant at 3-4 months following various birth scenarios[J]. Microbiome, 2017, 5(1): 40.
doi: 10.1186/s40168-017-0254-x
|
[23] |
Crost EH, Tailford LE, Le Gall G, et al. Utilisation of mucin glycans by the human gut symbiont Ruminococcus gnavus is strain-dependent[J]. PLoS One, 2013, 8(10): e76341.
doi: 10.1371/journal.pone.0076341
|
[24] |
Henrick BM, Rodriguez L, Lakshmikanth T, et al. Bifidobacteria-mediated immune system imprinting early in life[J]. Cell, 2021, 184(15): 3884-3898.
doi: 10.1016/j.cell.2021.05.030
pmid: 34143954
|
[25] |
Jing W, Liu Q, Wang W. Bifidobacterium bifidum TMC3115 ameliorates milk protein allergy in by affecting gut microbiota: a randomized double-blind control trial[J]. J Food Biochem, 2020, 44(11): e13489.
|