Journal of Clinical Pediatrics ›› 2022, Vol. 40 ›› Issue (7): 481-487.doi: 10.12372/jcp.2022.22e0740
• Commentary • Next Articles
Received:
2022-05-23
Published:
2022-07-15
Online:
2022-07-08
Contact:
HUANG Min
E-mail:huangmin@sjtu.edu.cn
HUANG Yujuan, HUANG Min. Research status of predictive model for IVIG resistance in Kawasaki disease[J].Journal of Clinical Pediatrics, 2022, 40(7): 481-487.
[1] |
Burns JC, Glodé MP. Kawasaki syndrome[J]. Lancet, 2004, 364(9433): 533-544.
pmid: 15302199 |
[2] | McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the american heart association[J]. Circulation, 2017, 135(17): e927-e999. |
[3] |
Kobayashi T, Ayusawa M, Suzuki H, et al. Revision of diagnostic guidelines for Kawasaki disease (6th revised edition)[J]. Pediatr Int, 2020, 62(10): 1135-1138.
doi: 10.1111/ped.14326 |
[4] |
Kim GB, Park S, Eun LY, et al. Epidemiology and clinical features of Kawasaki Disease in South Korea, 2012-2014 [J]. Pediatr Infect Dis J, 2017, 36(5): 482-485.
doi: 10.1097/INF.0000000000001474 |
[5] |
Lue HC, Chen LR, Lin MT, et al. Estimation of the incidence of Kawasaki disease in Taiwan. A comparison of two data sources: nationwide hospital survey and national health insurance claims[J]. Pediatr Neonatol, 2014, 55(2): 97-100.
doi: 10.1016/j.pedneo.2013.05.011 |
[6] |
Makino N, Nakamura Y, Yashiro M, et al. Descriptive epidemiology of Kawasaki disease in Japan, 2011-2012: from the results of the 22nd nationwide survey[J]. J Epidemiol, 2015, 25(3): 239-245.
doi: 10.2188/jea.JE20140089 |
[7] |
Huang MY, Gupta-Malhotra M, Huang JJ, et al. Acute-phase reactants and a supplemental diagnostic aid for Kawasaki disease[J]. Pediatr Cardiol, 2010, 31(8): 1209-1213.
doi: 10.1007/s00246-010-9801-y |
[8] |
Li X, Chen Y, Tang Y, et al. Predictors of intravenous immune globulin resistant Kawasaki disease in children: a meta-analysis of 4442 cases[J]. Eur J Pediatr, 2018, 177(8): 1279-1292.
doi: 10.1007/s00431-018-3182-2 |
[9] |
Park HM, Lee DW, Hyun MC, et al. Predictors of nonresponse to intravenous immunoglobulin therapy in Kawasaki disease[J]. Korean J Pediatr, 2013, 56(2): 75-79.
doi: 10.3345/kjp.2013.56.2.75 pmid: 23482814 |
[10] |
Hu P, Jiang GM, Wu Y, et al. TNF-α is superior to conventional inflammatory mediators in forecasting IVIG nonresponse and coronary arteritis in Chinese children with Kawasaki disease[J]. Clin Chim Acta, 2017, 471: 76-80.
doi: 10.1016/j.cca.2017.05.019 |
[11] |
Nakamura N, Muto T, Masuda Y, et al. Procalcitonin as a biomarker of unresponsiveness to intravenous immunoglobulin for Kawasaki disease[J]. Pediatr Infect Dis J, 2020, 39(9): 857-861.
doi: 10.1097/INF.0000000000002716 pmid: 32433223 |
[12] |
Wu G, Yue P, Ma F, et al. Neutrophil-to-lymphocyte ratio as a biomarker for predicting the intravenous immunoglobulin resistant Kawasaki disease[J]. Medicine (Baltimore), 2020, 99(6): e18535.
doi: 10.1097/MD.0000000000018535 |
[13] |
Domingnez SR, Martin B, Heizer H, et al. Procal-citonin (PCT) and Kawasaki disease:does pct correlate with IVIG resistant disease,admission to the intensive care unit or development of coronary artery lesions?[J]. J Pediatric Infect Dis Soc, 2016, 5(3): 297-302.
doi: 10.1093/jpids/piv019 |
[14] |
Kuo HC, Liang CD, Wang CL, et al. Serum albumin level predicts initial intravenous immunoglobulin treatment failure in Kawasaki disease[J]. Acta Paediatr, 2010, 99(10): 1578-1583.
doi: 10.1111/j.1651-2227.2010.01875.x |
[15] |
Masuzawa Y, Mori M, Hara T, et al. Elevated D-dimer level is a risk factor for coronary artery lesions accompanying intravenous immunoglobulin-unresponsive Kawasaki disease[J]. Ther Apher Dial, 2015, 19(2): 171-177.
doi: 10.1111/1744-9987.12235 |
[16] |
Teraguchi M, Ogino H, Yoshimura K, et al. Steroid pulse therapy for children with intravenous immunoglobulin therapy-resistant Kawasaki disease: a prospective study[J]. Pediatr Cardiol, 2013, 34(4): 959-963.
doi: 10.1007/s00246-012-0589-9 pmid: 23184018 |
[17] |
Kaneko K, Yoshimura K, Ohashi A, et al. Prediction of the risk of coronaryarterial lesions in Kawasaki disease by brain natriuretic peptide[J]. Pediatr Cardiol, 2011, 32(8): 1106-1109.
doi: 10.1007/s00246-011-9986-8 |
[18] |
Wang T, Liu G, Lin H. A machine learning approach to predict intravenous immunoglobulin resistance in Kawasaki disease patients: a study based on a Southeast China population[J]. PLoS One, 2020, 15(8): e0237321.
doi: 10.1371/journal.pone.0237321 |
[19] |
Kuniyoshi Y, Tokutake H, Takahashi N, et al. Comparison of machine learning models for prediction of initial intravenous immunoglobulin resistance in children with Kawasaki disease[J]. Front Pediatr, 2020, 8: 570834.
doi: 10.3389/fped.2020.570834 |
[20] |
Kobayashi T, Inoue Y, Takeuchi K, et al. Prediction of intravenous immunoglobulin unresponsiveness in patients with Kawasaki disease[J]. Circulation, 2006, 113(22): 2606-2612.
pmid: 16735679 |
[21] |
Egami K, Muta H, Ishii M, et al. Prediction of resistance to intravenous immunoglobulin treatment in patients with Kawasaki disease[J]. J Pediatr, 2006, 149(2): 237-240.
doi: 10.1016/j.jpeds.2006.03.050 |
[22] |
Sano T, Kurotobi S, Matsuzaki K, et al. Prediction of non-responsiveness to standard high dose gamma-globulin therapy in patients with acute Kawasaki disease before starting initial treatment[J]. Eur J Pediatr, 2007, 166(2):131-137.
doi: 10.1007/s00431-006-0223-z |
[23] |
Sato S, Kawashima H, Kashiwagi Y, et al. Inflammatory cytokines as predictors of resistance to intravenous immunoglobulin therapy in Kawasaki disease patients[J]. Int J Rheum Dis, 2013, 16(2): 168-172.
doi: 10.1111/1756-185X.12082 |
[24] |
Kawanlura Y, Takeshita S, Kanai T, et al. The combined usefulness of the neutrophil-to-lymphocyte and platelet lymphocyte ratios in predicting intravenous immunoglobulin resistance with Kawasaki disease[J]. J Pediatr, 2016, 178: 281-284.
doi: 10.1016/j.jpeds.2016.07.035 |
[25] |
Takeshita S, Kanai T, Kawamura Y, et al. A comparison of the predictive validity of the combination of the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio and other risk scoring systems for intravenous immunoglobulin-resistance in Kawasaki disease[J]. PLoS One, 2017, 12(5): e0176957.
doi: 10.1371/journal.pone.0176957 |
[26] |
Tremoulet AH, Best BM, Song S, et al. Resistance to intravenous immunoglobulin in children with Kawasaki disease[J]. J Pediatr, 2008, 153(1): 117-121.
doi: 10.1016/j.jpeds.2007.12.021 |
[27] |
Fu PP, Du ZD, Pan YS. Novel predictors of intravenous immunoglobulin resistance in Chinese children with Kawasaki disease[J]. Pediatr Infect Dis J, 2013, 32(8): e319-323.
doi: 10.1097/INF.0b013e31828e887f |
[28] |
Song R, Yao W, Li X. Efficacy of four scoring systems in predicting intravenous immunoglobulin resistance in children with Kawasaki disease in a children's hospital in Beijing, North China[J]. J Pediatr, 2017, 184: 120-124.
doi: 10.1016/j.jpeds.2016.12.018 |
[29] |
Yang S, Song R, Zhang J, et al. Predictive tool for intravenous immunoglobulin resistance of Kawasaki disease in Beijing[J]. Arch Dis Child, 2019, 104(3):262-267.
doi: 10.1136/archdischild-2017-314512 |
[30] |
Tang Y, Yan W, Sun L, et al. Prediction of intravenous simmuno globulin resistance in Kawasaki disease in an east China population[J]. Clin Rheumatol, 2016, 35(11): 2771-2776.
doi: 10.1007/s10067-016-3370-2 |
[31] |
Qian W, Tang Y, Yan W, et al. A comparison of efficacy of six prediction models for intravenous immune globulin resistance in Kawasaki disease[J]. Ital J Pediatr, 2018, 44(1): 33.
doi: 10.1186/s13052-018-0475-z |
[32] |
Hua W, Sun Y, Wang Y, et al. A new model to predict intravenous immunoglobin-resistant Kawasaki disease[J]. Oncotarget, 2017, 8(46): 80722-80729.
doi: 10.18632/oncotarget.21083 pmid: 29113339 |
[33] |
Kong WX, Ma FY, Fu SL, et al. Biomarkers of intravenous immunoglobulin resistance and coronary artery lesions in Kawasaki disease[J]. World J Pediatr, 2019, 15(2):168-175.
doi: 10.1007/s12519-019-00234-6 |
[34] | 朱丹颖, 宋思瑞, 黄敏, 等. 川崎病丙种球蛋白无反应评分模型的建立与研究[J]. 国际儿科学杂志, 2018, 45(7): 532-536. |
[35] | 陈丽琴, 宋思瑞, 黄敏, 等. 川崎病丙种球蛋白无反应型易感基因研究[J]. 临床儿科杂志, 2019, 37(10): 721-726. |
[36] |
Chen LQ, Song SR, Huang M, et al. Prediction for intravenous immunoglobulin resistance combining genetic risk loci identified from next generation sequencing and laboratory data in Kawasaki disease[J]. Front Pediatr, 2020, 8: 462367.
doi: 10.3389/fped.2020.462367 |
[37] |
Wu S, Long Y, Chen S, et al. A new scoring system for prediction of intravenous immunoglobulin resistance of Kawasaki disease in infants under 1-year old[J]. Front Pediatr, 2019, 7: 514.
doi: 10.3389/fped.2019.00514 |
[38] |
Wu S, Liao Y, Sun Y, et al. Prediction of intravenous immune globulin resistance in Kawasaki disease in children[J]. World J Pediatr, 2020, 16(6): 607-613.
doi: 10.1007/s12519-020-00348-2 |
[39] |
Tan XH, Zhang XW, Wang XY, et al. A new model for predicting intravenous immunoglobin-resistant Kawasaki disease in Chongqing: a retrospective study on 5277 patients[J]. Sci Rep, 2019, 9(1): 1722.
doi: 10.1038/s41598-019-39330-y |
[40] | 谢丽萍, 黄国英, 刘芳, 等. 对川崎病患儿静脉注射丙种球蛋白耐药临床预测模型建立的质疑[J]. 中国循证儿科杂志, 2019, 14(3): 169-175. |
[41] |
Bar-Meir M, Kalisky I, Schwartz A, et al. Prediction of resistance to intravenous immunoglobulin in children with Kawasaki disease[J]. J Pediatric Infect Dis Soc, 2018, 7: 25-29.
doi: 10.1093/jpids/piw075 pmid: 28062554 |
[42] |
Grignani R, Rajgor DD, Leow YG, et al. A novel model forpredicting non-responsiveness to intravenous immunoglobulins in Kawasaki disease: the Singapore experience[J]. J Paediatr Child Health, 2019, 55(8): 962-967.
doi: 10.1111/jpc.14329 |
[43] |
Chen L, Song S, Ning Q, et al. Prediction for intravenous immunoglobulin resistance combining genetic risk loci identified from next generation sequencing and laboratory data in kawasaki disease[J]. Front Pediatr. 2020, 8: 462367.
doi: 10.3389/fped.2020.462367 |
[44] |
Kuo HC, Wong HS, Chang WP, et al. Prediction for intravenous immunoglobulin resistance by using weighted genetic risk score identified from genome-wide association study in Kawasaki disease[J]. Circ Cardiovasc Genet, 2017, 10(5): e001625.
doi: 10.1161/CIRCGENETICS.116.001625 |
[1] | LUO Mingjing, YU Jiaming, WANG Xiaodong, ZHANG Xiaoling, YU Yue, ZHANG Yu, WEN Feiqiu, LIU Sixi. Clinical analysis of invasive fungal disease secondary to allogeneic hematopoietic stem cell transplantation in 424 children with thalassemia [J]. Journal of Clinical Pediatrics, 2025, 43(1): 21-28. |
[2] | LIU Dongxia, JIN Rong, LIN Rongjun. Risk factors analysis of severe refractory Mycoplasma pneumoniae pneumonia complicated with bronchitis obliterans in children [J]. Journal of Clinical Pediatrics, 2025, 43(1): 29-34. |
[3] | ZHONG Jinhong, WANG Can, CHEN Fang. Progress in the research of infantile fiberoptic bronchoscopy sedation [J]. Journal of Clinical Pediatrics, 2025, 43(1): 50-55. |
[4] | JIANG Weiqin, WANG Jing, CHENG Anna, CHEN Tingting, HUANG Yujuan. Predictors of recurrent febrile seizures during the same febrile illness in children with febrile seizures [J]. Journal of Clinical Pediatrics, 2025, 43(1): 8-13. |
[5] | QIU Xiu, WEI Dongmei, LIN Shanshan, XIA Huimin, ZHOU Wenhao. Principles and practice of the Born in Guangzhou Cohort Study [J]. Journal of Clinical Pediatrics, 2024, 42(9): 747-752. |
[6] | FAN Jianxia. The origins and development of the healthy life trajectory program: a cohort of community-family-mother-child multidimensional interventions for overweight and obesity in children [J]. Journal of Clinical Pediatrics, 2024, 42(9): 768-773. |
[7] | JIANG Tao, LI Shuangjie, TANG Lian, OUYANG Wenxian. Immunobiological properties of peripheral blood MAIT cells in children with chronic hepatitis B [J]. Journal of Clinical Pediatrics, 2024, 42(9): 787-790. |
[8] | ZHOU Jie, LIU Keqiang, WANG Jinling, WANG Ying. Megacystis-microcolon-intestinal hypoperistalsis syndrome caused by MYH11 elongating mutation : a case report and literatures review [J]. Journal of Clinical Pediatrics, 2024, 42(9): 798-804. |
[9] | CHU Sijia, TANG Jihong. Research progress of central nervous system injury associated with pediatric acute lymphoblastic leukemia and its treatment [J]. Journal of Clinical Pediatrics, 2024, 42(9): 811-816. |
[10] | DING Yaping, XIA Shanshan, ZHANG Chenmei. Interpretation of “2023 Children’s Renal Nutrition Working Group Clinical Practice Recommendations: Nutritional Management of Children with Acute Kidney Injury” [J]. Journal of Clinical Pediatrics, 2024, 42(8): 667-672. |
[11] | LI Yirong, LI Huiping, GAO Jingyu, XIAO Yuhua, CHEN Xiaomin, LU Yanling, ZHAO Nana, FENG Xiaoqin. Comparison of different doses of cytarabine for induction chemotherapy in children with acute myeloid leukemia in FLAG-IDA regimen [J]. Journal of Clinical Pediatrics, 2024, 42(8): 673-677. |
[12] | HUANG Bo, DONG Yanying, SONG Linlan. Clinical characteristics of 348 children with infectious mononucleosis [J]. Journal of Clinical Pediatrics, 2024, 42(8): 678-683. |
[13] | WANG Dan, SHAO Jingbo, LI Hong, ZHANG Na, ZHU Jiashi, FU Pan, WANG Zhen. Clinical analysis of 38 cases of hematological malignancies complicated with tumor lysis syndrome in children [J]. Journal of Clinical Pediatrics, 2024, 42(8): 684-690. |
[14] | MA Yan, WEI Xingjiao, BAI Hua, ZHANG Yan, TIAN Xinmin, Aqsa Ahmad, LIANG Lijun. Analysis of etiological composition and clinical features of stage 5 chronic kidney disease in children in a tertiary hospital in western China [J]. Journal of Clinical Pediatrics, 2024, 42(8): 697-703. |
[15] | WANG Ye, ZHANG Linlin, CHI Zuofei, SUN Ruowen, JIANG Zehui, XU Gang. A case of clinical report of T-lymphoblastic lymphoma secondary to acute promyelocytic leukemia in children [J]. Journal of Clinical Pediatrics, 2024, 42(8): 722-727. |
|