Journal of Clinical Pediatrics ›› 2023, Vol. 41 ›› Issue (5): 394-400.doi: 10.12372/jcp.2023.22e0555
• Literature Review • Previous Articles
Reviewer: XU Xiao, ZHAO Lin, Reviser: GONG Fangqi
Received:
2022-04-26
Published:
2023-05-15
Online:
2023-05-10
XU Xiao, ZHAO Lin, GONG Fangqi. Role of vascular smooth muscle cell phenotypic switching in cardiovascular diseases in children[J].Journal of Clinical Pediatrics, 2023, 41(5): 394-400.
[1] | 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545. |
[2] |
Zhu Y, Guo P, Zou Z, et al. Status of cardiovascular health in Chinese children and adolescents : a cross-sectional study in China[J]. JACC Asia, 2022, 2(1): 87-100.
doi: 10.1016/j.jacasi.2021.09.007 |
[3] |
Liu M, Gomez D. Smooth muscle cell phenotypic diversity[J]. Arterioscler Thromb Vasc Biol, 2019, 39(9): 1715-1723.
doi: 10.1161/ATVBAHA.119.312131 pmid: 31340668 |
[4] | Chakraborty R, Chatterjee P, Dave JM, et al. Targeting smooth muscle cell phenotypic switching in vascular disease[J]. JVS Vasc Sci, 2021, 2: 79-94. |
[5] |
Chamley-Campbell J, Campbell GR, Ross R. The smooth muscle cell in culture[J]. Physiol Rev, 1979, 59(1): 1-61.
doi: 10.1152/physrev.1979.59.1.1 pmid: 108688 |
[6] |
Allahverdian S, Chaabane C, Boukais K, et al. Smooth muscle cell fate and plasticity in atherosclerosis[J]. Cardiovasc Res, 2018, 114(4): 540-550.
doi: 10.1093/cvr/cvy022 pmid: 29385543 |
[7] |
Worssam MD, Jorgensen HF. Mechanisms of vascular smooth muscle cell investment and phenotypic diversification in vascular diseases[J]. Biochem Soc Trans, 2021, 49(5): 2101-2111.
doi: 10.1042/BST20210138 |
[8] |
Pan H, Xue C, Auerbach BJ, et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human[J]. Circulation, 2020, 142(21): 2060-2075.
doi: 10.1161/CIRCULATIONAHA.120.048378 |
[9] |
Yap C, Mieremet A, de Vries CJM, et al. Six shades of vascular smooth muscle cells illuminated by KLF4 (Kruppel-like factor 4)[J]. Arterioscler Thromb Vasc Biol, 2021, 41(11): 2693-2707.
doi: 10.1161/ATVBAHA.121.316600 |
[10] | McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association[J]. Circulation, 2017, 135(17): e927-e999. |
[11] | Subspecialty Group of Cardiology, the Society of Pediatrics, Chinese Medcial Association, et al. Recommendations for clinical management of Kawasaki disease with coronary artery lesions (2020 revision)[J]. Zhonghua Er Ke Za Zhi, 2020, 58(9): 718-724. |
[12] |
Orenstein JM, Shulman ST, Fox LM, et al. Three linked vasculopathic processes characterize Kawasaki disease: a light and transmission electron microscopic study[J]. PLoS One, 2012, 7(6): e38998.
doi: 10.1371/journal.pone.0038998 |
[13] |
Suganuma E, Sato S, Honda S, et al. A novel mouse model of coronary stenosis mimicking Kawasaki disease induced by Lactobacillus casei cell wall extract[J]. Exp Anim, 2020, 69(2): 233-241.
doi: 10.1538/expanim.19-0124 |
[14] | Porritt RA, Zemmour D, Abe M, et al. NLRP3 inflam-masome mediates immune-stromal interactions in vasculitis[J]. Circ Res, 2021, 129(9): e183-e200. |
[15] |
Noval Rivas M, Arditi M. Kawasaki disease: patho-physiology and insights from mouse models[J]. Nat Rev Rheumatol, 2020, 16(7): 391-405.
doi: 10.1038/s41584-020-0426-0 |
[16] |
Arora K, Guleria S, Jindal AK, et al. Platelets in Kawasaki disease: is this only a numbers game or something beyond?[J]. Genes Dis, 2020, 7(1): 62-66.
doi: 10.1016/j.gendis.2019.09.003 pmid: 32181276 |
[17] |
Zeng Z, Xia L, Fan X, et al. Platelet-derived miR-223 promotes a phenotypic switch in arterial injury repair[J]. J Clin Invest, 2019, 129(3): 1372-1386.
doi: 10.1172/JCI124508 pmid: 30645204 |
[18] |
Zhang Y, Wang Y, Zhang L, et al. Reduced platelet miR-223 induction in Kawasaki disease leads to severe coronary artery pathology through a miR-223/PDGFRbeta vascular smooth muscle cell axis[J]. Circ Res, 2020, 127(7): 855-873.
doi: 10.1161/CIRCRESAHA.120.316951 pmid: 32597702 |
[19] |
Petsophonsakul P, Furmanik M, Forsythe R, et al. Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation[J]. Arterioscler Thromb Vasc Biol, 2019, 39(7): 1351-1368.
doi: 10.1161/ATVBAHA.119.312787 pmid: 31144989 |
[20] |
Garrido E, Metayer T, Borha A, et al. Intracranial aneurysms in pediatric population: a two-center audit[J]. Childs Nerv Syst, 2021, 37(8): 2567-2575.
doi: 10.1007/s00381-021-05151-6 |
[21] |
Nakajima N, Nagahiro S, Sano T, et al. Phenotypic modulation of smooth muscle cells in human cerebral aneurysmal walls[J]. Acta Neuropathol, 2000, 100(5): 475-480.
pmid: 11045669 |
[22] |
Oka M, Shimo S, Ohno N, et al. Dedifferentiation of smooth muscle cells in intracranial aneurysms and its potential contribution to the pathogenesis[J]. Sci Rep, 2020, 10(1): 8330.
doi: 10.1038/s41598-020-65361-x pmid: 32433495 |
[23] |
Bossone E, Eagle KA. Epidemiology and management of aortic disease: aortic aneurysms and acute aortic syndromes[J]. Nat Rev Cardiol, 2021, 18(5): 331-348.
doi: 10.1038/s41569-020-00472-6 pmid: 33353985 |
[24] |
Pedroza AJ, Tashima Y, Shad R, et al. Single-cell transcriptomic profiling of vascular smooth muscle cell phenotype modulation in Marfan syndrome aortic aneurysm[J]. Arterioscler Thromb Vasc Biol, 2020, 40(9): 2195-2211.
doi: 10.1161/ATVBAHA.120.314670 pmid: 32698686 |
[25] |
Clark ER, Helliwell RJ, Bailey MA, et al. Preservation of smooth muscle cell integrity and function: a target for limiting abdominal aortic aneurysm expansion?[J]. Cells, 2022, 11(6): 1043.
doi: 10.3390/cells11061043 |
[26] |
Benenson I, Waldron FA, Porter S. Pediatric hypertension: a guideline update[J]. Nurse Pract, 2020, 45(5): 16-23.
doi: 10.1097/01.NPR.0000660332.31690.68 pmid: 32271260 |
[27] |
Guarner-Lans V, Ramírez-Higuera A, Rubio-Ruiz ME, et al. Early programming of adult systemic essential hypertension[J]. Int J Mol Sci, 2020, 21(4): 1203.
doi: 10.3390/ijms21041203 |
[28] |
Touyz RM, Alves-Lopes R, Rios FJ, et al. Vascular smooth muscle contraction in hypertension[J]. Cardiovasc Res, 2018, 114(4): 529-539.
doi: 10.1093/cvr/cvy023 pmid: 29394331 |
[29] |
Zhang JR, Sun HJ. MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction[J]. Hypertens Res, 2021, 44(2): 129-146.
doi: 10.1038/s41440-020-00553-6 |
[30] | Li Y, Li H, Xing W, et al. Vascular smooth muscle cell-specific miRNA-214 knockout inhibits angiotensin II-induced hypertension through upregulation of Smad7[J]. FASEB J, 2021, 35(11): e21947. |
[31] |
Jin L, Lin X, Yang L, et al. AK098656, a novel vascular smooth muscle cell-dominant long noncoding RNA, promotes hypertension[J]. Hypertension, 2018, 71(2): 262-272.
doi: 10.1161/HYPERTENSIONAHA.117.09651 pmid: 29279317 |
[32] | Fang G, Qi J, Huang L, et al. LncRNA MRAK048635_P1 is critical for vascular smooth muscle cell function and phenotypic switching in essential hypertension[J]. Biosci Rep, 2019, 39(3): BSR20182229. |
[33] | 中华医学会呼吸病学分会肺栓塞与肺血管病学组. 中国肺动脉高压诊断与治疗指南(2021版)[J]. 中华医学杂志, 2021, 101(1): 11-51. |
[34] |
Rosenzweig EB, Abman SH, Adatia I, et al. Paediatric pulmonary arterial hypertension: updates on definition, classification, diagnostics and management[J]. Eur Respir J, 2019, 53(1): 1801916.
doi: 10.1183/13993003.01916-2018 |
[35] | Zhang W, Tao Z, Xu F, et al. An overview of miRNAs involved in PASMC phenotypic switching in pulmonary hypertension[J]. Biomed Res Int, 2021, 2021: 5765029. |
[36] |
Gong J, Chen Z, Chen Y, et al. Long non-coding RNA CASC2 suppresses pulmonary artery smooth muscle cell proliferation and phenotypic switch in hypoxia-induced pulmonary hypertension[J]. Respir Res, 2019, 20(1): 53.
doi: 10.1186/s12931-019-1018-x |
[37] |
Wang L, Rice M, Swist S, et al. BMP9 and BMP10 act directly on vascular smooth muscle cells for generation and maintenance of the contractile state[J]. Circulation, 2021, 143(14): 1394-1410.
doi: 10.1161/CIRCULATIONAHA.120.047375 pmid: 33334130 |
[38] |
Yeo Y, Yi ES, Kim JM, et al. FGF12 (fibroblast growth factor 12) inhibits vascular smooth muscle cell remodeling in pulmonary arterial hypertension[J]. Hypertension, 2020, 76(6): 1778-1786.
doi: 10.1161/HYPERTENSIONAHA.120.15068 pmid: 33100045 |
[39] |
Morris HE, Neves KB, Montezano AC, et al. Notch3 signalling and vascular remodelling in pulmonary arterial hypertension[J]. Clin Sci (Lond), 2019, 133(24): 2481-2498.
doi: 10.1042/CS20190835 pmid: 31868216 |
[40] |
Dijkema EJ, Leiner T, Grotenhuis HB. Diagnosis, imaging and clinical management of aortic coarctation[J]. Heart, 2017, 103(15): 1148-1155.
doi: 10.1136/heartjnl-2017-311173 pmid: 28377475 |
[41] | Tanaskovic I, Ilic S, Jurisic V, et al. Histochemical, immunohistochemical and ultrastructural analysis of aortic wall in neonatal coarctation[J]. Rom J Morphol Embrol, 2019, 60(4): 1291-1298. |
[42] |
Liu A, Li B, Yang M, et al. RNA sequencing analyses in infants patients with coarctation of the aorta[J]. Hereditas, 2021, 158(1): 32.
doi: 10.1186/s41065-021-00194-w pmid: 34425910 |
[43] |
Russo RAG, Katsicas MM. Takayasu arteritis[J]. Front Pediatr, 2018, 6: 265.
doi: 10.3389/fped.2018.00265 pmid: 30338248 |
[44] |
Millan P, Gavcovich TB, Abitbol C. Childhood-onset Takayasu arteritis[J]. Curr Opin Pediatr, 2022, 34(2): 223-228.
doi: 10.1097/MOP.0000000000001113 pmid: 35142753 |
[45] |
Watanabe R, Berry GJ, Liang DH, et al. Pathogenesis of giant cell arteritis and Takayasu arteritis-similarities and differences[J]. Curr Rheumatol Rep, 2020, 22(10): 68.
doi: 10.1007/s11926-020-00948-x pmid: 32845392 |
[46] |
Shekhonin BV, Tararak EM, Griaznov OG, et al. Phenotypes of smooth muscle cells in carotid arteries in Takayasu's disease[J]. Arkh Patol, 2003, 65(2): 31-35.
pmid: 15357245 |
[47] |
Bertipaglia B, Faggin E, Cillo U, et al. Is apoptosis of vascular smooth muscle cells involved in the development of Takayasu arteritis? Suggestions from a case report[J]. Rheumatology (Oxford), 2005, 44(4): 484-487.
doi: 10.1093/rheumatology/keh515 |
[1] | LUO Mingjing, YU Jiaming, WANG Xiaodong, ZHANG Xiaoling, YU Yue, ZHANG Yu, WEN Feiqiu, LIU Sixi. Clinical analysis of invasive fungal disease secondary to allogeneic hematopoietic stem cell transplantation in 424 children with thalassemia [J]. Journal of Clinical Pediatrics, 2025, 43(1): 21-28. |
[2] | LIU Dongxia, JIN Rong, LIN Rongjun. Risk factors analysis of severe refractory Mycoplasma pneumoniae pneumonia complicated with bronchitis obliterans in children [J]. Journal of Clinical Pediatrics, 2025, 43(1): 29-34. |
[3] | ZHONG Jinhong, WANG Can, CHEN Fang. Progress in the research of infantile fiberoptic bronchoscopy sedation [J]. Journal of Clinical Pediatrics, 2025, 43(1): 50-55. |
[4] | JIANG Weiqin, WANG Jing, CHENG Anna, CHEN Tingting, HUANG Yujuan. Predictors of recurrent febrile seizures during the same febrile illness in children with febrile seizures [J]. Journal of Clinical Pediatrics, 2025, 43(1): 8-13. |
[5] | QIU Xiu, WEI Dongmei, LIN Shanshan, XIA Huimin, ZHOU Wenhao. Principles and practice of the Born in Guangzhou Cohort Study [J]. Journal of Clinical Pediatrics, 2024, 42(9): 747-752. |
[6] | FAN Jianxia. The origins and development of the healthy life trajectory program: a cohort of community-family-mother-child multidimensional interventions for overweight and obesity in children [J]. Journal of Clinical Pediatrics, 2024, 42(9): 768-773. |
[7] | JIANG Tao, LI Shuangjie, TANG Lian, OUYANG Wenxian. Immunobiological properties of peripheral blood MAIT cells in children with chronic hepatitis B [J]. Journal of Clinical Pediatrics, 2024, 42(9): 787-790. |
[8] | ZHOU Jie, LIU Keqiang, WANG Jinling, WANG Ying. Megacystis-microcolon-intestinal hypoperistalsis syndrome caused by MYH11 elongating mutation : a case report and literatures review [J]. Journal of Clinical Pediatrics, 2024, 42(9): 798-804. |
[9] | CHU Sijia, TANG Jihong. Research progress of central nervous system injury associated with pediatric acute lymphoblastic leukemia and its treatment [J]. Journal of Clinical Pediatrics, 2024, 42(9): 811-816. |
[10] | DING Yaping, XIA Shanshan, ZHANG Chenmei. Interpretation of “2023 Children’s Renal Nutrition Working Group Clinical Practice Recommendations: Nutritional Management of Children with Acute Kidney Injury” [J]. Journal of Clinical Pediatrics, 2024, 42(8): 667-672. |
[11] | LI Yirong, LI Huiping, GAO Jingyu, XIAO Yuhua, CHEN Xiaomin, LU Yanling, ZHAO Nana, FENG Xiaoqin. Comparison of different doses of cytarabine for induction chemotherapy in children with acute myeloid leukemia in FLAG-IDA regimen [J]. Journal of Clinical Pediatrics, 2024, 42(8): 673-677. |
[12] | HUANG Bo, DONG Yanying, SONG Linlan. Clinical characteristics of 348 children with infectious mononucleosis [J]. Journal of Clinical Pediatrics, 2024, 42(8): 678-683. |
[13] | WANG Dan, SHAO Jingbo, LI Hong, ZHANG Na, ZHU Jiashi, FU Pan, WANG Zhen. Clinical analysis of 38 cases of hematological malignancies complicated with tumor lysis syndrome in children [J]. Journal of Clinical Pediatrics, 2024, 42(8): 684-690. |
[14] | MA Yan, WEI Xingjiao, BAI Hua, ZHANG Yan, TIAN Xinmin, Aqsa Ahmad, LIANG Lijun. Analysis of etiological composition and clinical features of stage 5 chronic kidney disease in children in a tertiary hospital in western China [J]. Journal of Clinical Pediatrics, 2024, 42(8): 697-703. |
[15] | WANG Ye, ZHANG Linlin, CHI Zuofei, SUN Ruowen, JIANG Zehui, XU Gang. A case of clinical report of T-lymphoblastic lymphoma secondary to acute promyelocytic leukemia in children [J]. Journal of Clinical Pediatrics, 2024, 42(8): 722-727. |
|