Journal of Clinical Pediatrics ›› 2023, Vol. 41 ›› Issue (5): 394-400.doi: 10.12372/jcp.2023.22e0555
• Literature Review • Previous Articles
Reviewer: XU Xiao, ZHAO Lin, Reviser: GONG Fangqi
Received:
2022-04-26
Online:
2023-05-15
Published:
2023-05-10
XU Xiao, ZHAO Lin, GONG Fangqi. Role of vascular smooth muscle cell phenotypic switching in cardiovascular diseases in children[J].Journal of Clinical Pediatrics, 2023, 41(5): 394-400.
[1] | 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2020概要[J]. 中国循环杂志, 2021, 36(6): 521-545. |
[2] |
Zhu Y, Guo P, Zou Z, et al. Status of cardiovascular health in Chinese children and adolescents : a cross-sectional study in China[J]. JACC Asia, 2022, 2(1): 87-100.
doi: 10.1016/j.jacasi.2021.09.007 |
[3] |
Liu M, Gomez D. Smooth muscle cell phenotypic diversity[J]. Arterioscler Thromb Vasc Biol, 2019, 39(9): 1715-1723.
doi: 10.1161/ATVBAHA.119.312131 pmid: 31340668 |
[4] | Chakraborty R, Chatterjee P, Dave JM, et al. Targeting smooth muscle cell phenotypic switching in vascular disease[J]. JVS Vasc Sci, 2021, 2: 79-94. |
[5] |
Chamley-Campbell J, Campbell GR, Ross R. The smooth muscle cell in culture[J]. Physiol Rev, 1979, 59(1): 1-61.
doi: 10.1152/physrev.1979.59.1.1 pmid: 108688 |
[6] |
Allahverdian S, Chaabane C, Boukais K, et al. Smooth muscle cell fate and plasticity in atherosclerosis[J]. Cardiovasc Res, 2018, 114(4): 540-550.
doi: 10.1093/cvr/cvy022 pmid: 29385543 |
[7] |
Worssam MD, Jorgensen HF. Mechanisms of vascular smooth muscle cell investment and phenotypic diversification in vascular diseases[J]. Biochem Soc Trans, 2021, 49(5): 2101-2111.
doi: 10.1042/BST20210138 |
[8] |
Pan H, Xue C, Auerbach BJ, et al. Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human[J]. Circulation, 2020, 142(21): 2060-2075.
doi: 10.1161/CIRCULATIONAHA.120.048378 |
[9] |
Yap C, Mieremet A, de Vries CJM, et al. Six shades of vascular smooth muscle cells illuminated by KLF4 (Kruppel-like factor 4)[J]. Arterioscler Thromb Vasc Biol, 2021, 41(11): 2693-2707.
doi: 10.1161/ATVBAHA.121.316600 |
[10] | McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association[J]. Circulation, 2017, 135(17): e927-e999. |
[11] | Subspecialty Group of Cardiology, the Society of Pediatrics, Chinese Medcial Association, et al. Recommendations for clinical management of Kawasaki disease with coronary artery lesions (2020 revision)[J]. Zhonghua Er Ke Za Zhi, 2020, 58(9): 718-724. |
[12] |
Orenstein JM, Shulman ST, Fox LM, et al. Three linked vasculopathic processes characterize Kawasaki disease: a light and transmission electron microscopic study[J]. PLoS One, 2012, 7(6): e38998.
doi: 10.1371/journal.pone.0038998 |
[13] |
Suganuma E, Sato S, Honda S, et al. A novel mouse model of coronary stenosis mimicking Kawasaki disease induced by Lactobacillus casei cell wall extract[J]. Exp Anim, 2020, 69(2): 233-241.
doi: 10.1538/expanim.19-0124 |
[14] | Porritt RA, Zemmour D, Abe M, et al. NLRP3 inflam-masome mediates immune-stromal interactions in vasculitis[J]. Circ Res, 2021, 129(9): e183-e200. |
[15] |
Noval Rivas M, Arditi M. Kawasaki disease: patho-physiology and insights from mouse models[J]. Nat Rev Rheumatol, 2020, 16(7): 391-405.
doi: 10.1038/s41584-020-0426-0 |
[16] |
Arora K, Guleria S, Jindal AK, et al. Platelets in Kawasaki disease: is this only a numbers game or something beyond?[J]. Genes Dis, 2020, 7(1): 62-66.
doi: 10.1016/j.gendis.2019.09.003 pmid: 32181276 |
[17] |
Zeng Z, Xia L, Fan X, et al. Platelet-derived miR-223 promotes a phenotypic switch in arterial injury repair[J]. J Clin Invest, 2019, 129(3): 1372-1386.
doi: 10.1172/JCI124508 pmid: 30645204 |
[18] |
Zhang Y, Wang Y, Zhang L, et al. Reduced platelet miR-223 induction in Kawasaki disease leads to severe coronary artery pathology through a miR-223/PDGFRbeta vascular smooth muscle cell axis[J]. Circ Res, 2020, 127(7): 855-873.
doi: 10.1161/CIRCRESAHA.120.316951 pmid: 32597702 |
[19] |
Petsophonsakul P, Furmanik M, Forsythe R, et al. Role of vascular smooth muscle cell phenotypic switching and calcification in aortic aneurysm formation[J]. Arterioscler Thromb Vasc Biol, 2019, 39(7): 1351-1368.
doi: 10.1161/ATVBAHA.119.312787 pmid: 31144989 |
[20] |
Garrido E, Metayer T, Borha A, et al. Intracranial aneurysms in pediatric population: a two-center audit[J]. Childs Nerv Syst, 2021, 37(8): 2567-2575.
doi: 10.1007/s00381-021-05151-6 |
[21] |
Nakajima N, Nagahiro S, Sano T, et al. Phenotypic modulation of smooth muscle cells in human cerebral aneurysmal walls[J]. Acta Neuropathol, 2000, 100(5): 475-480.
pmid: 11045669 |
[22] |
Oka M, Shimo S, Ohno N, et al. Dedifferentiation of smooth muscle cells in intracranial aneurysms and its potential contribution to the pathogenesis[J]. Sci Rep, 2020, 10(1): 8330.
doi: 10.1038/s41598-020-65361-x pmid: 32433495 |
[23] |
Bossone E, Eagle KA. Epidemiology and management of aortic disease: aortic aneurysms and acute aortic syndromes[J]. Nat Rev Cardiol, 2021, 18(5): 331-348.
doi: 10.1038/s41569-020-00472-6 pmid: 33353985 |
[24] |
Pedroza AJ, Tashima Y, Shad R, et al. Single-cell transcriptomic profiling of vascular smooth muscle cell phenotype modulation in Marfan syndrome aortic aneurysm[J]. Arterioscler Thromb Vasc Biol, 2020, 40(9): 2195-2211.
doi: 10.1161/ATVBAHA.120.314670 pmid: 32698686 |
[25] |
Clark ER, Helliwell RJ, Bailey MA, et al. Preservation of smooth muscle cell integrity and function: a target for limiting abdominal aortic aneurysm expansion?[J]. Cells, 2022, 11(6): 1043.
doi: 10.3390/cells11061043 |
[26] |
Benenson I, Waldron FA, Porter S. Pediatric hypertension: a guideline update[J]. Nurse Pract, 2020, 45(5): 16-23.
doi: 10.1097/01.NPR.0000660332.31690.68 pmid: 32271260 |
[27] |
Guarner-Lans V, Ramírez-Higuera A, Rubio-Ruiz ME, et al. Early programming of adult systemic essential hypertension[J]. Int J Mol Sci, 2020, 21(4): 1203.
doi: 10.3390/ijms21041203 |
[28] |
Touyz RM, Alves-Lopes R, Rios FJ, et al. Vascular smooth muscle contraction in hypertension[J]. Cardiovasc Res, 2018, 114(4): 529-539.
doi: 10.1093/cvr/cvy023 pmid: 29394331 |
[29] |
Zhang JR, Sun HJ. MiRNAs, lncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction[J]. Hypertens Res, 2021, 44(2): 129-146.
doi: 10.1038/s41440-020-00553-6 |
[30] | Li Y, Li H, Xing W, et al. Vascular smooth muscle cell-specific miRNA-214 knockout inhibits angiotensin II-induced hypertension through upregulation of Smad7[J]. FASEB J, 2021, 35(11): e21947. |
[31] |
Jin L, Lin X, Yang L, et al. AK098656, a novel vascular smooth muscle cell-dominant long noncoding RNA, promotes hypertension[J]. Hypertension, 2018, 71(2): 262-272.
doi: 10.1161/HYPERTENSIONAHA.117.09651 pmid: 29279317 |
[32] | Fang G, Qi J, Huang L, et al. LncRNA MRAK048635_P1 is critical for vascular smooth muscle cell function and phenotypic switching in essential hypertension[J]. Biosci Rep, 2019, 39(3): BSR20182229. |
[33] | 中华医学会呼吸病学分会肺栓塞与肺血管病学组. 中国肺动脉高压诊断与治疗指南(2021版)[J]. 中华医学杂志, 2021, 101(1): 11-51. |
[34] |
Rosenzweig EB, Abman SH, Adatia I, et al. Paediatric pulmonary arterial hypertension: updates on definition, classification, diagnostics and management[J]. Eur Respir J, 2019, 53(1): 1801916.
doi: 10.1183/13993003.01916-2018 |
[35] | Zhang W, Tao Z, Xu F, et al. An overview of miRNAs involved in PASMC phenotypic switching in pulmonary hypertension[J]. Biomed Res Int, 2021, 2021: 5765029. |
[36] |
Gong J, Chen Z, Chen Y, et al. Long non-coding RNA CASC2 suppresses pulmonary artery smooth muscle cell proliferation and phenotypic switch in hypoxia-induced pulmonary hypertension[J]. Respir Res, 2019, 20(1): 53.
doi: 10.1186/s12931-019-1018-x |
[37] |
Wang L, Rice M, Swist S, et al. BMP9 and BMP10 act directly on vascular smooth muscle cells for generation and maintenance of the contractile state[J]. Circulation, 2021, 143(14): 1394-1410.
doi: 10.1161/CIRCULATIONAHA.120.047375 pmid: 33334130 |
[38] |
Yeo Y, Yi ES, Kim JM, et al. FGF12 (fibroblast growth factor 12) inhibits vascular smooth muscle cell remodeling in pulmonary arterial hypertension[J]. Hypertension, 2020, 76(6): 1778-1786.
doi: 10.1161/HYPERTENSIONAHA.120.15068 pmid: 33100045 |
[39] |
Morris HE, Neves KB, Montezano AC, et al. Notch3 signalling and vascular remodelling in pulmonary arterial hypertension[J]. Clin Sci (Lond), 2019, 133(24): 2481-2498.
doi: 10.1042/CS20190835 pmid: 31868216 |
[40] |
Dijkema EJ, Leiner T, Grotenhuis HB. Diagnosis, imaging and clinical management of aortic coarctation[J]. Heart, 2017, 103(15): 1148-1155.
doi: 10.1136/heartjnl-2017-311173 pmid: 28377475 |
[41] | Tanaskovic I, Ilic S, Jurisic V, et al. Histochemical, immunohistochemical and ultrastructural analysis of aortic wall in neonatal coarctation[J]. Rom J Morphol Embrol, 2019, 60(4): 1291-1298. |
[42] |
Liu A, Li B, Yang M, et al. RNA sequencing analyses in infants patients with coarctation of the aorta[J]. Hereditas, 2021, 158(1): 32.
doi: 10.1186/s41065-021-00194-w pmid: 34425910 |
[43] |
Russo RAG, Katsicas MM. Takayasu arteritis[J]. Front Pediatr, 2018, 6: 265.
doi: 10.3389/fped.2018.00265 pmid: 30338248 |
[44] |
Millan P, Gavcovich TB, Abitbol C. Childhood-onset Takayasu arteritis[J]. Curr Opin Pediatr, 2022, 34(2): 223-228.
doi: 10.1097/MOP.0000000000001113 pmid: 35142753 |
[45] |
Watanabe R, Berry GJ, Liang DH, et al. Pathogenesis of giant cell arteritis and Takayasu arteritis-similarities and differences[J]. Curr Rheumatol Rep, 2020, 22(10): 68.
doi: 10.1007/s11926-020-00948-x pmid: 32845392 |
[46] |
Shekhonin BV, Tararak EM, Griaznov OG, et al. Phenotypes of smooth muscle cells in carotid arteries in Takayasu's disease[J]. Arkh Patol, 2003, 65(2): 31-35.
pmid: 15357245 |
[47] |
Bertipaglia B, Faggin E, Cillo U, et al. Is apoptosis of vascular smooth muscle cells involved in the development of Takayasu arteritis? Suggestions from a case report[J]. Rheumatology (Oxford), 2005, 44(4): 484-487.
doi: 10.1093/rheumatology/keh515 |
[1] | ZOU Liping. Childhood encephalopathy: a group of diseases associated with various diseases [J]. Journal of Clinical Pediatrics, 2023, 41(9): 641-643. |
[2] | ZHANG Weihua, ZOU Liping, REN Haitao, GUAN Hongzhi. Beware of the pitfalls in diagnosis and treatment of autoimmune encephalitis in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 644-649. |
[3] | HOU Chi, CHEN Wenxiong, LIAO Yinting, WU Wenxiao, TIAN Yang, ZHU Haixia, PENG Bingwei, ZENG Yiru, WU Wenlin, CHEN Zongzong, LI Xiaojing. Clinical analysis of autoimmune glial fibrillary acidic protein astrocytopathy in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 656-660. |
[4] | YANG Yating, CAI Yuehao, FANG Qiong, CHEN Lang, CHEN Qiaobin, LIN Zhi, WU Feifei, LIN Meng. Clinical analysis of idiopathic and symptomatic occipital lobe epilepsy in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 668-673. |
[5] | HOU Ruolin, WU Jing, LI Ling. Pediatric autoimmune encephalitis with brain MRI showing meningeal thickening and enhancement [J]. Journal of Clinical Pediatrics, 2023, 41(9): 674-679. |
[6] | WU Yuefang, SUN Yanling, WU Wanshui, DU Shuxu, LI Miao, SUN Liming. Analysis of prognostic factors and survival status of group 4 medulloblastoma in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 686-691. |
[7] | SUN Juan, LI Haiying, JIA Peisheng, WANG Huaili. Clinical analysis of fulminant myocarditis in 12 children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 692-696. |
[8] | Reviewer: WANG Chenhui, Reviser: YANG Hui. Research progress on early screening and diagnosis of Crohn's disease in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 708-714. |
[9] | SHEN Nan, DU Bailu. Strategies for the diagnosis, treatment, and management of invasive fungal infections in children with hematologic neoplasms [J]. Journal of Clinical Pediatrics, 2023, 41(8): 571-577. |
[10] | XU Beixue, LIU Quanbo. Clinical analysis of 195 children with invasive pulmonary fungal infection [J]. Journal of Clinical Pediatrics, 2023, 41(8): 584-588. |
[11] | CHEN Hongyu, LIU Zihao, WANG Heping, LIAO Cuijuan, LI Li, WANG Wenjian, LAI Jianwei. Role of nontypeable Haemophilus influenzae biofilms in chronic pulmonary infection in children [J]. Journal of Clinical Pediatrics, 2023, 41(8): 589-593. |
[12] | KANG Lei, GUO Fang, LI Lifang, BAI Xinfeng, CHENG Caiyun, XU Meixian. Value of metagenomic next-generation sequencing in children with visceral leishmaniasis associated with hemolytic histiocytosis [J]. Journal of Clinical Pediatrics, 2023, 41(8): 594-598. |
[13] | SUN Zhicai, LIU Yuling, LI Xiaolin, PAN Xiaofen. Clinical analysis of 15 children with primary nephrotic syndrome complicated with adrenal crisis [J]. Journal of Clinical Pediatrics, 2023, 41(8): 610-612. |
[14] | WANG Hongxia, PAN Xiang, LU Jun. Report a case of α-ketoadipic aciduria caused by compound heterozygous variant of DHTKD1 gene [J]. Journal of Clinical Pediatrics, 2023, 41(8): 624-628. |
[15] | XI Bixin, HU Qun, LIU Aiguo. Research advances of the bronchiolitis obliterans syndrome following allogeneic hematopoietic stem cell transplant in children [J]. Journal of Clinical Pediatrics, 2023, 41(8): 629-633. |
|