Journal of Clinical Pediatrics ›› 2023, Vol. 41 ›› Issue (4): 252-258.doi: 10.12372/jcp.2023.22e1736
• Neonatal Disease • Previous Articles Next Articles
Shenzhen Neonatal Data Network
Received:
2023-01-04
Online:
2023-04-15
Published:
2023-04-07
Shenzhen Neonatal Data Network. A multicenter survey and clinical analysis of neonatal hyperammonemia[J].Journal of Clinical Pediatrics, 2023, 41(4): 252-258.
"
年份 | 总分娩量(n) | 新生儿住院数[n(%)] | 高氨血症[n(×1/万)] | 男[n(%)] | 女[n(%)] |
---|---|---|---|---|---|
2017 | 124 970 | 42 261(33.81) | 8(0.64) | 4(50.00) | 4(50.00) |
2018 | 130 350 | 40 688(31.21) | 18(1.38) | 12(66.67) | 6(33.33) |
2019 | 135 674 | 46 534(34.30) | 13(0.96) | 6(46.15) | 7(53.85) |
2020 | 112 830 | 40 421(35.82) | 8(0.71) | 6(75.00) | 2(25.00) |
2021 | 109 153 | 44 247(40.53) | 14(1.28) | 7(50.50) | 7(50.50) |
2022 | 95 444 | 39 568(41.46) | 12(1.26) | 9(75.00) | 3(25.00) |
合计 | 708 421 | 253 719(35.81) | 73(1.03) | 44(60.27) | 29(39.73) |
"
病因 分类 | 具体疾病 (原发病) | 性别 (例数) | 胎龄/周 | 入院天数/d | 血氨峰值 /μmol·L-1 | 临床表现 | 常规实验室 检查 | 治疗方式 |
---|---|---|---|---|---|---|---|---|
先天遗传性代谢病 | 鸟氨酸氨甲酰基转移酶缺乏症 | 男(2) | 38.78 (38.62~38.96) | 1.52 (0.78~2.26) | 1 590 (1 545~1 635) | 发热、气促、呻吟、呕吐、抽搐、抽泣样呼吸、昏迷 | 血乳酸、肝酶增高,电解质紊乱 | 均机械通气、精氨酸静滴 |
瓜氨酸血症 | 男(4) | 39.14 (38.25~39.93) | 4.5 (3.5~5.5) | 867.75 (575.73~1 232.25) | 同上 | 同上 | 血液净化1例,精氨酸静滴2例,左旋肉碱2例 | |
高鸟氨酸血症-高氨血症-高同型瓜氨酸尿症 | 女(1) | 38.71 | 40 | 320.8 | 同上 | 不详 | 精氨酸静滴 | |
肉碱棕榈酰转移酶或移位酶 | 男(1) 女(2) | 38.86 (38.50~39.21) | 1 (0.52~1.50) | 1 115 (887.0~2 247.5) | 同上,心脏骤停 | 同上 | 血液净化2例,精氨酸静滴1例,纠酸3例 | |
甲基丙二酸血症 | 男(4) 女(1) | 39.43 (39.00~39.89) | 4 (3~6) | 1 277 (257.6~1 369) | 同上,心脏骤停 | 同上 | 纠酸补液、精氨酸静滴3例,血液净化2例,腹膜透析2例 | |
戊二酸血症II型 | 男(2) 女(3) | 38.93 (38.43~39.43) | 3 (1~3) | 183 (170.1~302.4) | 同上,心脏骤停 | 同上、低血糖 | 左旋肉碱4例,专用奶粉、精氨酸静滴2例,口服核黄素3例 | |
丙酸血症 | 男(2) 女(1) | 38.71 (38.71~39.28) | 4 (3.5~4.0) | 454.1 (340.70~1 033.55) | 同上 | 不详 | 精氨酸静滴1例,左旋肉碱1例,换血1例 | |
异戊酸血症 | 女(1) | 38.28 | 14 | 695.3 | 同上 | 不详 | 精氨酸静滴 | |
继发性高氨血症 | 新生儿窒息 | 男(2) 女(1) | 39.86 (37.86~40.36) | 0.04 (0.03~0.23) | 107.2 (105.95~370.10) | 同上 | 同上+脑软化 | 禁食、补液、机械通气 |
新生儿肺炎 | 男(1) 女(1) | 40.07 (39.61~40.54) | 1.5 (0.75~2.25) | 120.9 (115.35~126.45) | 同上 | 同上 | 呼吸循环支持、抗感染、纠酸 | |
低血糖脑病 | 男(1) | 37.85 | 2 | 234.6 | 同上 | 同上 | 同上 | |
顽固性低血糖 | 男(1) | 40.85 | 0.3 | 1 155 | 同上 | 同上 | 同上 | |
坏死性小肠结肠炎(ⅢB) 先天性胆道闭锁 | 男(1) | 34.57 | 21 | 292.6 | 反复腹胀 | 同上+气腹+结肠细小+先天性胆道闭锁(腹部/造影和彩超) | 同上 | |
心肌致密化不全 | 男(1) | 38.57 | 34 | 183 | 气促、发绀、反应差 | 同上 | 同上 | |
新生儿败血症 感染性休克 | 男(1) | 40.28 | 1 | 360 | 同上 | 同上+脑梗塞 | 精氨酸静滴 | |
先天性心脏病 (主动脉缩窄) | 女(1) | 40.42 | 2 | 408 | 同上 | 同上 | 呼吸循环支持、抗感染、纠酸 | |
糖原累积症(Ia型) | 女(1) | 39.42 | 1.3 | 114.8 | 同上、抽搐 | 不详 | 血液净化 | |
暂时性高氨血症 | 男(5) 女(6) | 37.7 (31.71~38.93) | 1 (0.02~3.00) | 139.1 (110.15~190.50) | 气促、反应差、抽搐、肌张力低、皮肤黄染 | 代酸、高乳酸 | 精氨酸静滴1例,其余针对原发病治疗 | |
不明原因高氨血症 | 男(16) 女(10) | 37.28 (35.64~38.89) | 1 (0.02~3.00) | 308.90 (148~495) | 反应差、喂养困难19例,发绀16例,心脏骤停8例,意识障碍8例,抽搐7例,肌张力减低3例,发热1例,肌张力增高1例 | 代酸、高乳酸,血糖、凝血功能、电解质紊乱 | 精氨酸静滴6例,血液净化3例,腹膜透析1例,左卡尼丁口服1例,余对症支持治疗 |
"
疾病名称 | 基因名称 | 基因位点 | 遗传方式 | 变异来源 |
---|---|---|---|---|
高鸟氨酸血症-高氨血症 -高同型瓜氨酸尿症(HHHS) | SLC25A15 | chr13:41381512(父亲) chr13:41379324(母亲) | 常染色体隐性遗传 | 父亲为致病性变异 母亲来源临床意义未明 |
肉碱棕榈酰转移酶或移位酶 | SLC25A20 | Intron2 | 同上 | 染色体3p21.31 |
瓜氨酸血症 | ASS1基因 | chr9:13336 4791 | 同上 | 不详 |
瓜氨酸血症 | G6PC(NM_000151.3) | exon2 | 同上 | 父母均杂合携带 |
戊二酸血症2A型 | ETFA(NM_000126.4) | chr15:76580278变异 位点c.360G>T | 同上 | 新发 |
肉碱棕榈酰转移酶Ⅱ型 | CPT2(NM_000098.2) | chr1:53676593 | 同上 | 新发 |
肉碱-酰基肉碱移位酶缺乏症 | SLC25A20 | chr3:48921567 | 同上 | 纯合突变 |
暂时性高氨血症 | 未发现与临床表型高度相关的基因变异 | 无 | 无 | 无 |
复合型氧化磷酸化缺陷症22型 21羟化酶缺乏性肾上腺皮质增生症 | 无 | 无 | 无 | |
心肌致密化不全 | 产前诊断示NONO基因变异 | 无 | 无 | 无 |
糖原累积症 | GAA基因杂合变异 | c.546+5G>T和c.2051C> T(p.P684L) | 常染色体隐性遗传 | 分别 来自父母 |
不明原因高氨血症 | 正常 | 无 | 无 | 无 |
RYR1 | c.11578G>Achr19-39026698p.E3860K c.13588C>T1chr19-39058486p.P4530S | 常染色体隐性/ 显性遗传 | 无 |
[1] | Fiati Kenston SS, Song X, Li Z, et al. Mechanistic insight, diagnosis, and treatment of ammonia-induced hepatic encephalopathy[J]. Gastroenterol Hepatol, 2019, 34(1): 31-39. |
[2] |
Ribas GS, Lopes FF, Deon M, et al. Hyperammonemia in inherited metabolic diseases[J]. Cell Mol Neurobiol, 2022, 42(8): 2593-2610.
doi: 10.1007/s10571-021-01156-6 |
[3] | Alfadhel M, Mutairi FA, Makhseed N, et al. Guidelines for acute management of hyperammonemia in the Middle East region[J]. Ther Clin Risk Manag, 2016, 12: 479-487. |
[4] |
Häberle J. Clinical and biochemical aspects of primary and secondary hyperammonemic disorders[J]. Arch Biochem Biophys, 2013, 536(2): 101-108.
doi: 10.1016/j.abb.2013.04.009 pmid: 23628343 |
[5] |
Häberle J, Burlina A, Chakrapani A, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders: first revision[J]. J Inherit Metab Dis, 2019, 42(6): 1192-1230.
doi: 10.1002/jimd.12100 pmid: 30982989 |
[6] |
Hansen L, Lind-Thomsen A, Joshi HJ, et al. A glycogene mutation map for discovery of diseases of glycosylation[J]. Glycobiology, 2015, 25(2): 211-224.
doi: 10.1093/glycob/cwu104 pmid: 25267602 |
[7] |
Ames EG, Powell C, Engen RM, et al. Multisite retro-spective review of outcomes in renal replacement therapy for neonates with inborn errors of metabolism[J]. J Pediatr, 2022, 246: 116-122.
doi: 10.1016/j.jpeds.2022.03.043 |
[8] |
Ni B, Qin M, Zhao J, et al. A glance at transient hyper-ammonemia of the newborn: pathophysiology, diagnosis, and treatment: a review[J]. Medicine (Baltimore), 2022, 101(48): e31796.
doi: 10.1097/MD.0000000000031796 |
[9] |
Demirkol D, Aktuğlu Zeybek Ç, Karacabey BN, et al. The role of supportive treatment in the management of hyperammonemia in neonates and infants[J]. Blood Purif, 2019, 48(2): 150-157.
doi: 10.1159/000495021 |
[10] |
Häberle J, Burlina A, Chakrapani A, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders: First revision[J]. J Inherit Metab Dis, 2019, 42(6): 1192-1230.
doi: 10.1002/jimd.12100 pmid: 30982989 |
[11] |
Tarailo-Graovac M, Shyr C, Ross CJ, et al. Exome sequencing and the management of neurometabolic disorders[J]. N Engl J Med, 2016, 374(23): 2246-2255.
doi: 10.1056/NEJMoa1515792 |
[12] |
Taylor RW, Pyle A, Griffin H, et al. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies[J]. JAMA, 2014, 312 (1): 68-77.
doi: 10.1001/jama.2014.7184 pmid: 25058219 |
[13] | 中国医师协会医学遗传医师分会临床生化专业委员会, 中华医学会儿科学分会内分泌遗传代谢学组, 中国妇幼保健协会儿童疾病和保健分会遗传代谢学组, 等. 中国尿素循环障碍诊断治疗和管理指南[J]. 中华儿科杂志, 2022, 60(11): 1118-1126. |
[14] | 陆妹. 尿素循环障碍导致的危重症识别及对策[J]. 中国实用儿科杂志, 2021, 36(10): 735-738. |
[15] |
Warrillow S, Fisher C, Bellomo R. Correction and control of hyperammonemia in acute liver failure: the impact of continuous renal replacement timing, intensity, and duration[J]. Crit Care Med, 2020, 48(2): 218-224.
doi: 10.1097/CCM.0000000000004153 pmid: 31939790 |
[16] |
Matoori S, Forster V, Agostoni V, et al. Preclinical evaluation of liposome-supported peritoneal dialysis for the treatment of hyperammonemic crises[J]. J Control Release, 2020, 328: 503-513.
doi: 10.1016/j.jconrel.2020.08.040 |
[17] |
Wu X, Vega M, Swartz SJ, et al. Milky appearance of peritoneal fluid in a neonate on peritoneal dialysis due to end-stage renal disease: answers[J]. Pediatr Nephrol, 2018, 33(1): 73-76.
doi: 10.1007/s00467-017-3633-4 pmid: 28283762 |
[18] |
Raina R, Bedoyan JK, Lichter-Konecki U, et al. Consensus guidelines for management of hyperammonaemia in paediatric patients receiving continuous kidney replacement therapy[J]. Nat Rev Nephrol, 2020, 16(8): 471-482.
doi: 10.1038/s41581-020-0267-8 pmid: 32269302 |
[19] |
Eisenstein I, Pollack S, Hadash A, et al. Acute hemodialysis therapy in neonates with inborn errors of metabolism[J]. Pediatr Nephrol, 2022, 37(11): 2725-2732.
doi: 10.1007/s00467-022-05507-3 pmid: 35239033 |
[20] |
Kido J, Matsumoto S, Häberle J, et al. Role of liver transplantation in urea cycle disorders: Report from a nationwide study in Japan[J]. J Inherit Metab Dis, 2021, 44(6): 1311-1322.
doi: 10.1002/jimd.12415 pmid: 34232532 |
[1] | XIANG Chao, ZHANG Rong, KANG Lan, LEI Xiaoping, LIU Xingqing, DONG Wenbin. Association of coefficient of glycemic variation and SNAPPE-Ⅱ with prognosis in critically ill neonates [J]. Journal of Clinical Pediatrics, 2023, 41(6): 430-435. |
[2] | XU Jinglin, YANG Hansong, CHEN Xinhua, CHEN Jiangbin, LI Xiaoqing, ZHANG Weifeng, CHEN Dongmei. Clinical analysis of continuous blood purification in the treatment of neonatal septic shock with acute kidney injury [J]. Journal of Clinical Pediatrics, 2023, 41(6): 436-441. |
[3] | ZHANG Yongjun, ZHU Tianwen. Early diagnosis and precise intervention of neonatal hyperammonemia [J]. Journal of Clinical Pediatrics, 2023, 41(4): 241-246. |
[4] | CHEN Yan, WANG Lin. Attention should be paid to neonatal hyperammonemia [J]. Journal of Clinical Pediatrics, 2023, 41(4): 247-251. |
[5] | ZHANG Yinchun, MO Wenhui, BAI Bo, CHEN Jinmian, SHI Congcong, GU Xia, XIAO Xin, HAO Hu. Genetic screening and early intervention in neonatal hyperammonemia caused by urea cycle disorder [J]. Journal of Clinical Pediatrics, 2023, 41(4): 259-265. |
[6] | CHU Xiaoyun, SUN Yifan, YAN Chongbing, HONG Wenchao, GONG Xiaohui, CAI Cheng. Clinical analysis of urea cycle disorders in 5 neonates [J]. Journal of Clinical Pediatrics, 2023, 41(4): 266-271. |
[7] | LIU Ling, JIANG Yuhui, NIE Panrong, ZENG Limei, DUAN Gaiyuan, LI Yuchen. Investigation of the relationship between gene polymorphisms and neonatal hyperbilirubinemia in southwest China [J]. Journal of Clinical Pediatrics, 2022, 40(9): 672-678. |
[8] | YANG Yang, CHI Xia, TONG Meiling, ZHOU Xiaoyu, CHENG Rui, PAN Jingjing, CHEN Xiaoqing. Predictive value of different neonatal illness severity scores for predischarge outcomes in very and extremely low birth weight infants [J]. Journal of Clinical Pediatrics, 2022, 40(8): 608-615. |
[9] | ZHANG Kun, FAN Sainan, ZHENG Fang, ZHANG Jiahui, WU Zhimin, LYU Anping, MA Yanan, FANG Xiaohui, ZHANG Jinping. The effect of phototherapy on intestinal flora and drug-resistant genes in jaundiced neonates [J]. Journal of Clinical Pediatrics, 2022, 40(6): 436-441. |
[10] | WANG Yingcan, TAN Jintong, CHEN Yan, HUANG Qi, XIA Hongping. Neonatal severe hyperparathyroidism caused by novel variation in CASR gene: a case report [J]. Journal of Clinical Pediatrics, 2022, 40(6): 442-445. |
[11] | CHEN Biao, ZHAO Ruiqiu. Clinical research progress on neonatal sepsis induced by Streptococcus agalactiae [J]. Journal of Clinical Pediatrics, 2022, 40(11): 875-880. |
[12] | DING Jing, XIAO Yihan, XUE Yujuan, FU Jie, LIU Jie, QIN Jiong, ZENG Chaomei. Clinical analysis of neonates affected by maternal chronic myeloid leukemia [J]. Journal of Clinical Pediatrics, 2022, 40(10): 760-764. |
[13] | ZHANG Ting, LI Xiaowen. Analysis of risk factors for the prognosis of neonatal acute kidney injury [J]. Journal of Clinical Pediatrics, 2021, 39(9): 646-. |
[14] | GAO Chuchu, WANG Sannan, FU Kai, et al. The value of receptor interacting protein 3 in the diagnosis of neonatal sepsis [J]. Journal of Clinical Pediatrics, 2021, 39(3): 167-. |
[15] | XIN Chun, MEI Hua, ZHANG Yanbo, et al. Cleft palate associated with COL2A1 gene mutation: a case report and literature review [J]. Journal of Clinical Pediatrics, 2021, 39(3): 187-. |
|