Journal of Clinical Pediatrics ›› 2022, Vol. 40 ›› Issue (9): 672-678.doi: 10.12372/jcp.2022.21e1598
• Neonatal Disease • Previous Articles Next Articles
LIU Ling1, JIANG Yuhui2(
), NIE Panrong3, ZENG Limei4, DUAN Gaiyuan5, LI Yuchen5
Received:2021-11-16
Published:2022-09-15
Online:2022-08-26
Contact:
JIANG Yuhui
E-mail:kmjyhui@126.com
LIU Ling, JIANG Yuhui, NIE Panrong, ZENG Limei, DUAN Gaiyuan, LI Yuchen. Investigation of the relationship between gene polymorphisms and neonatal hyperbilirubinemia in southwest China[J].Journal of Clinical Pediatrics, 2022, 40(9): 672-678.
"
| 项 目 | 病例组(n=190) | 对照组(n=200) | 统计量 | P |
|---|---|---|---|---|
| 男性[n(%)] | 98(51.6) | 116(58.0) | χ2=1.62 | 0.203 |
| 胎龄(x±s)/d | 38.7±1.2 | 38.9±1.3 | t=0.57 | 0.448 |
| 出生体重(x±s)/kg | 3.2±0.4 | 3.2±0.4 | t=0.33 | 0.744 |
| 日龄[M(P25~P75)]/d | 7.9(4.0~11.0) | 8.3(4.0~11.5) | Z=0.56 | 0.573 |
| 开奶时间[M(P25~P75)]/h | 1.4(0.5~2.0) | 1.6(0.5~2.0) | Z=0.49 | 0.961 |
| 剖宫产[n(%)] | 33(17.4) | 38(19.0) | χ2=0.17 | 0.676 |
| 红细胞压积(x±s)/% | 58.5±5.4 | 56.4±5.8 | t=1.50 | 0.870 |
| 总胆红素(x±s)/μmol·L-1 | 342.0±62.7 | 62.4±9.7 | t=24.16 | <0.001 |
| 结合胆红素(x±s)/μmol·L-1 | 27.9±6.7 | 6.6±1.3 | t=18.02 | <0.001 |
"
| 基因型 | 病例组(n=190) | 对照组(n=200) | χ2值 | P |
|---|---|---|---|---|
| rs873478 | 5.86 | 0.055 | ||
| GG | 153(80.5) | 177(88.5) | ||
| CG | 30(15.8) | 21(10.5) | ||
| CC | 7(3.7) | 2(1.0) | ||
| 等位基因 | 6.86 | 0.009 | ||
| G | 336(88.4) | 375(93.8) | ||
| C | 44(11.6) | 25(6.3) | ||
| rs349469781) | 4.38 | 0.112 | ||
| CC | 167(89.3) | 190(95.0) | ||
| TC | 18(9.6) | 9(4.5) | ||
| TT | 2(1.1) | 1(0.5) | ||
| 等位基因 | 4.65 | 0.031 | ||
| C | 352(94.1) | 389(97.3) | ||
| T | 22(5.9) | 11(2.8) | ||
| rs41483232) | 10.61 | 0.005 | ||
| GG | 95(50.3) | 127(63.5) | ||
| GA | 65(34.4) | 60(30.0) | ||
| AA | 29(15.3) | 13(6.5) | ||
| 等位基因 | 12.06 | 0.001 | ||
| G | 255(67.5) | 314(78.5) | ||
| A | 123(32.5) | 86(21.5) | ||
| rs34993780 | 2.92 | 0.087 | ||
| TT | 185(97.4) | 199(99.5) | ||
| GT | 5(2.6) | 1(0.5) | ||
| 等位基因 | 2.90 | 0.089 | ||
| T | 375(98.7) | 399(99.8) | ||
| G | 5(1.3) | 1(0.3) | ||
| rs35350960 | 0.17 | 0.678 | ||
| CC | 185(97.4) | 196(98.0) | ||
| CA | 5(2.6) | 4(2.0) | ||
| 等位基因 | 0.17 | 0.680 | ||
| C | 375(98.7) | 396(99.0) | ||
| A | 5(1.3) | 4(1.0) |
| [1] |
Maisels MJ. Neonatal jaundice[J]. Pediatr Rev, 2006, 27(12): 443-454.
doi: 10.1542/pir.27.12.443 |
| [2] | 林佳媛. 胆红素代谢及其调节的研究进展[J]. 复旦学报(医学版), 2014, 41(3): 405-411. |
| [3] | 卜爱林, 李贵南. UGT1A1基因多态性与新生儿不明原因高胆红素血症的相关性[J]. 中国医师杂志, 2020, 22(11): 1736-1738. |
| [4] |
American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation[J]. Pediatrics, 2004, 114(1): 297-316.
doi: 10.1542/peds.114.1.297 |
| [5] |
Mehrad-Majd H, Haerian MS, Akhtari J, et al. Effects of Gly71Arg mutation in UGT1A1 gene on neonatal hyperbilirubinemia: a systematic review and meta-analysis[J]. J Matern Fetal Neonatal Med, 2019, 32(10): 1575-1585.
doi: 10.1080/14767058.2017.1410789 pmid: 29179591 |
| [6] |
Yueh MF, Chen S, Nguyen N, et al. Developmental, genetic, dietary, and xenobiotic influences on neonatal hyperbilirubinemia[J]. Mol Pharmacol, 2017, 91(5): 545-553.
doi: 10.1124/mol.116.107524 |
| [7] |
Li H, Zhang P. UGT1A1*28 gene polymorphism was not associated with the risk of neonatal hyperbilirubinemia: a meta-analysis[J]. J Matern Fetal Neonatal Med, 2021, 34(24): 4064-4071.
doi: 10.1080/14767058.2019.1702962 |
| [8] |
Amandito R, Rohsiswatmo R, Carolina E, et al. Profiling of UGT1A1*6, UGT1A1*60, UGT1A1*93, and UGT1A1*28 polymorphisms in Indonesian neonates with hyperbilirubinemia using multiplex PCR sequencing[J]. Front Pediatr, 2019, 7: 328.
doi: 10.3389/fped.2019.00328 pmid: 31440488 |
| [9] | 尹迪, 魏珊珊, 许无恨, 等. UGT1A1基因多态性与新生儿不明原因重度高胆红素血症的关系[J]. 中华新生儿科杂志, 2021, 36(6): 55-58. |
| [10] | 陈虹, 钟丹妮. 尿苷二磷酸葡萄糖醛酸转移酶1A1基因多态性的表达研究进展[J]. 中华实用儿科临床杂志, 2019, 5: 388-391. |
| [11] | 肖奇志, 郭洪创, 李恋湘, 等. G6PD活性、UGT1A1、SLCO1B1、ABCC2基因多态性和新生儿高胆红素血症的关系研究[J]. 分子诊断与治疗杂志, 2018, 10(3): 163-168. |
| [12] | Sticova E, Lodererova A, van de Steeg E, et al. Down-regulation of OATP1B proteins correlates with hyper-bilirubinemia in advanced cholestasis[J]. Int J Clin Exp Pathol, 2015, 8(5): 5252-5262. |
| [13] |
Hoekstra LT, de Graaf W, Nibourg GA, et al. Physiological and biochemical basis of clinical liver function tests: a review[J]. Ann Surg, 2013, 257(1): 27-36.
doi: 10.1097/SLA.0b013e31825d5d47 pmid: 22836216 |
| [14] |
van de Steeg E, Stránecký V, Hartmannová H, et al. Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver[J]. J Clin Invest, 2012, 122(2): 519-528.
doi: 10.1172/JCI59526 |
| [15] |
D’Silva S, Colah RB, Ghosh K, et al. Combined effects of the UGT1A1 and OATP2 gene polymorphisms as major risk factor for unconjugated hyperbilirubinemia in Indian neonates[J]. Gene, 2014, 547: 18-22.
doi: 10.1016/j.gene.2014.05.047 |
| [16] | 王朝, 赵玉平. 葡萄糖-6-磷酸脱氢酶缺乏症的发病机制及诊疗现状[J]. 国际输血及血液学杂志, 2017, 40(2): 178-181. |
| [17] |
Olusanya BO, Emokpae AA, Zamora TG, et al. Addressing the burden of neonatal hyperbilirubinaemia in countries with significant glucose-6-phosphate dehydrogenase deficiency[J]. Acta Paediatr, 2014, 103: 1102-1109.
doi: 10.1111/apa.12735 |
| [18] | Hu R, Lin M, Ye J, et al. Molecular epidemiological investigation of G6PD deficiency by a gene chip among Chinese Hakka of southern Jiangxi province[J]. Int J Clin Exp Pathol, 2015, 8(11): 15013-15018. |
| [19] | 奎莉越, 王明英, 周百灵, 等. 云南省婴儿期不同民族高非结合性胆红素血症UGT1A1基因多态性研究[J]. 分子诊断与治疗杂志, 2020, 12(3): 386-390. |
| [20] | 钟勇, 蒋晓梅, 冯于玲, 等. UGT1A1基因多态性与不同民族间新生儿高胆红素血症的关系[J]. 临床儿科杂志, 2013, 31(4): 324-327. |
| [21] | 何翠红, 屈艺. 新生儿高胆红素血症与基因多态性研究进展[J]. 中国当代儿科杂志, 2020, 22(3): 280-284. |
| [22] | Huang MJ, Chen YC, Huang YY, et al. Effect of UDP-glucuronosyltransferase 1A1 activity on risk for developing Gilbert's syndrome[J]. Kaohsiung J Med Sci, 2019, 35(7): 432-439. |
| [23] | MiXX, Yan J, Ma XJ, et al. Analysis of the UGT1A1 genotype in hyperbilirubinemia patients: differences in allele frequency and distribution[J]. Biomed Res Int, 2019, 2019:6272174. |
| [24] | 蒋榆辉, 刘玲, 奚敏, 等. SLCO1B1基因多态性与新生儿高胆红素血症的相关性[J]. 临床儿科杂志, 2018, 36(9): 7-10. |
| [25] |
Riskin A, Gery N, Kugelman A, et al. Glucose-6-phosphate dehydrogenase deficiency and borderline deficiency: association with neonatal hyperbilirubinemia[J]. J Pediatr, 2012, 161(2): 191-196.
doi: 10.1016/j.jpeds.2012.02.018 |
| [26] |
Liu Z, Yu C, Li Q, et al. Chinese newborn screening for the incidence of G6PD deficiency and variant of G6PD gene from 2013 to 2017[J]. Hum Mutat, 2020, 41(1): 212-221.
doi: 10.1002/humu.23911 |
| [27] | 许冰莹, 黄尤光, 程振江, 等. 云南籍葡萄糖-6-磷酸脱氢酶缺乏症基因突变研究[J]. 昆明医学院学报, 2007, 28(4): 6-12. |
| [1] | LIU Qingyu, WANG Liwei, LIN Yilin, XIAO Rui, ZHOU Hui, ZHANG Xiaoqian, FU Mengran, MI Hongying. Genetic variation analysis of neonatal hyperbilirubinemia: a single-center retrospective study [J]. Journal of Clinical Pediatrics, 2024, 42(9): 782-786. |
| [2] | ZHANG Ruijie, XI Guannan, WANG Xuefeng, LIN Xin’ao, DAI Jiale, FAN Xiaobo, WANG Jimei. Application of simplified lung ultrasound performed shortly after birth in the respiratory support needs of late preterm and term infants [J]. Journal of Clinical Pediatrics, 2024, 42(8): 714-721. |
| [3] | WANG Man, LI Luquan, LI Xiaowen. Analysis of risk factors for early-onset sepsis associated acute kidney injury in neonates [J]. Journal of Clinical Pediatrics, 2024, 42(6): 520-525. |
| [4] | XIANG Chao, ZHANG Rong, KANG Lan, LEI Xiaoping, LIU Xingqing, DONG Wenbin. Association of coefficient of glycemic variation and SNAPPE-Ⅱ with prognosis in critically ill neonates [J]. Journal of Clinical Pediatrics, 2023, 41(6): 430-435. |
| [5] | XU Jinglin, YANG Hansong, CHEN Xinhua, CHEN Jiangbin, LI Xiaoqing, ZHANG Weifeng, CHEN Dongmei. Clinical analysis of continuous blood purification in the treatment of neonatal septic shock with acute kidney injury [J]. Journal of Clinical Pediatrics, 2023, 41(6): 436-441. |
| [6] | ZHANG Yongjun, ZHU Tianwen. Early diagnosis and precise intervention of neonatal hyperammonemia [J]. Journal of Clinical Pediatrics, 2023, 41(4): 241-246. |
| [7] | Shenzhen Neonatal Data Network. A multicenter survey and clinical analysis of neonatal hyperammonemia [J]. Journal of Clinical Pediatrics, 2023, 41(4): 252-258. |
| [8] | CHU Xiaoyun, SUN Yifan, YAN Chongbing, HONG Wenchao, GONG Xiaohui, CAI Cheng. Clinical analysis of urea cycle disorders in 5 neonates [J]. Journal of Clinical Pediatrics, 2023, 41(4): 266-271. |
| [9] | YANG Yang, CHI Xia, TONG Meiling, ZHOU Xiaoyu, CHENG Rui, PAN Jingjing, CHEN Xiaoqing. Predictive value of different neonatal illness severity scores for predischarge outcomes in very and extremely low birth weight infants [J]. Journal of Clinical Pediatrics, 2022, 40(8): 608-615. |
| [10] | ZHANG Kun, FAN Sainan, ZHENG Fang, ZHANG Jiahui, WU Zhimin, LYU Anping, MA Yanan, FANG Xiaohui, ZHANG Jinping. The effect of phototherapy on intestinal flora and drug-resistant genes in jaundiced neonates [J]. Journal of Clinical Pediatrics, 2022, 40(6): 436-441. |
| [11] | WANG Yingcan, TAN Jintong, CHEN Yan, HUANG Qi, XIA Hongping. Neonatal severe hyperparathyroidism caused by novel variation in CASR gene: a case report [J]. Journal of Clinical Pediatrics, 2022, 40(6): 442-445. |
| [12] | CHEN Biao, ZHAO Ruiqiu. Clinical research progress on neonatal sepsis induced by Streptococcus agalactiae [J]. Journal of Clinical Pediatrics, 2022, 40(11): 875-880. |
| [13] | DING Jing, XIAO Yihan, XUE Yujuan, FU Jie, LIU Jie, QIN Jiong, ZENG Chaomei. Clinical analysis of neonates affected by maternal chronic myeloid leukemia [J]. Journal of Clinical Pediatrics, 2022, 40(10): 760-764. |
| [14] | ZHANG Ting, LI Xiaowen. Analysis of risk factors for the prognosis of neonatal acute kidney injury [J]. Journal of Clinical Pediatrics, 2021, 39(9): 646-. |
| [15] | GAO Chuchu, WANG Sannan, FU Kai, et al. The value of receptor interacting protein 3 in the diagnosis of neonatal sepsis [J]. Journal of Clinical Pediatrics, 2021, 39(3): 167-. |
|
||