Journal of Clinical Pediatrics ›› 2022, Vol. 40 ›› Issue (12): 886-893.doi: 10.12372/jcp.2022.22e1222
• Expert Review • Previous Articles Next Articles
GAO Chunlin
Received:
2022-09-13
Online:
2022-12-15
Published:
2022-12-06
GAO Chunlin. Clinical application of glomerular filtration rate in children[J].Journal of Clinical Pediatrics, 2022, 40(12): 886-893.
"
方法 | 相对分子质量 | 优 点 | 缺 点 |
---|---|---|---|
菊粉 | 5 200,不与血浆蛋白结合 | 金标准 | 价贵,在溶液中难以溶解和维持,供应有限 |
碘海醇 | 821,血浆蛋白结合率<2% | 非放射性,敏感的分析条件下允许低剂量 | 肾小管可能再吸收或蛋白结合,低估GFR,使用低剂量时需要昂贵的化验,不能用于碘过敏患者,高剂量有肾毒性和过敏反应风险 |
同位素:125I-碘钛酸盐(Iothalamate) | 636 | 价廉,半衰期较长,可用于研究 | 可能有小管分泌,导致GFR高估,125I放射性物质的存储、管理和处置的特殊要求,甲状腺可能摄取125I,使用非放射性碘酸盐需要昂贵的化验,不能用于碘过敏患者 |
51Cr-EDTA | 292,半衰期约2 h,不与血浆蛋白结合 | 在欧洲广泛使用 | 肾小管有再吸收,导致低估GFR,放射性物质的储存管理和处置要求 |
99mTc-DTPA | 393,半衰期约6 h | 在美国广泛应用,使用新的钆分析,灵敏度高,易于分析 | 放射性物质的存储、管理和处置的特殊要求,99mTc半衰期短,不适合研究性质,要求99mTc标准化,99mTc的解离和可部分与蛋白结合致GFR低估,使用钆作为示踪剂时需要注意可致肾纤维化 |
"
名 称 | 公 式 |
---|---|
Schwartz1976 | eGFR=0.43×身高(cm)/肌酐(mg/dL) eGFR=38×身高 (cm)/肌酐(μmol/L) |
Original Schwartz 1987 初始Schwartz 1(肌酐比色法) | eGFR=k×身高(cm)/肌酐(mg/dL),早产儿k= 0.33,足月儿k=0.45,儿童加女性k=0.55, 青春期男孩k= 0.7 |
初始Schwartz 2(肌酐比色法)1987 | eGFR=k×身高(cm)/血肌酐 (μmol/L),0~18个月k 40,2~16 岁女孩、2~13岁男孩49, 13~16岁男k 62 |
Updated Schwartz “bedside” (CKiDCr)2009 升级版Schwartz床旁公式(CKiDCr)2009(肌酐酶法) | eGFR=0.413×身高(cm)/血肌酐(mg/dL) eGFR=36.2×身高(cm)/ 血肌酐(μmol/L) |
CKiDCys C (Schwartz “bedside” cystatin C2009 Schwartz床旁公式胱抑素C 2009 | eGFR=70.69×[胱抑素 C(mg/L)]-0.931 |
CKiD Cr - Cys-C (combined CKiD creatinine-cystatin C)2009 Schwartz床旁公式肌酐联合胱抑素C 2009(肌酐酶法) | 女39.1×(身高/肌酐)0.516×(1.8/胱抑素C)0.294×(30/尿素 氮)0.169×(身高/1.4)0.188 男39.1×(身高/肌酐)0.516×(1.8/胱抑素C)0.294×(30/尿素 氮)0.169×1.099×(身高/1.4)0.188 |
Updated Schwartz “bedside” (CKiDCr)2012 升级版Schwartz床旁公式肌酐2012(肌酐酶法) | eGFR=42.3×(身高/肌酐)0.79 |
CKiDCys C (Schwartz “bedside” cystatin C2012 Schwartz床旁公式胱抑素C 2012 | eGFR=(70.69×胱抑素C)-0.931 |
CKiD Cr - Cys-C (combined CKiD creatinine-cystatin C)2012 Schwartz床旁公式肌酐联合胱抑素C 2012(肌酐酶法) | 女eGFR=39.8×[身高(m)/肌酐(mg/dL)]0.456×[1.8/胱抑素C (mg/L)]0.418×[30/尿素氨(mg/dL)]0.079×[身高(m)/1.4]0.179 男eGFR=39.8×[身高(m)/肌酐(mg/dL)]0.456×[1.8/胱抑素C(mg/L)]0.418×[30/尿素氨(mg/dL)]0.079×[1.076]×[身高(m)/1.4]0.179 |
Schwartz-Lyon Schwartz里昂(肌酐比色法) | eGFR=k×身高/肌酐,<13岁男孩、女性<18岁k=36.8,其余 年龄性别k=41.3 |
CKiD under 25(肌酐酶法) CKiD U25 | k×身高/肌酐(mg/L) k×1/胱抑素C |
[1] |
Kidney Disease: Improving Global Outcomes KDIGO CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease[J]. Kidney Int Suppl, 2013, 3: 1-150.
doi: 10.1038/ki.1973.1 |
[2] |
Piepsz A, Tondeur M, Ham H. Revisiting normal 51Cr-ethylenediaminetetraacetic acid clearance values in children[J]. Eur J Nucl Med Mol Imaging, 2006, 33(12): 1477-1482.
doi: 10.1007/s00259-006-0179-2 |
[3] |
Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents[J]. Clin J Am Soc Nephrol, 2009, 4(11): 1832-1843.
doi: 10.2215/CJN.01640309 |
[4] |
Ronco C, Chawla LS. Glomerular and tubular kidney stress test: new tools for a deeper evaluation of kidney function[J]. Nephron, 2016, 134(3): 191-194.
doi: 10.1159/000449235 |
[5] |
Dubourg L, Lemoine S, Joannard B, et al. Comparison of iohexol plasma clearance formulas vs. inulin urinary clearance for measuring glomerular filtration rate[J]. Clin Chem Lab Med, 2020, 59(3): 571-579.
doi: 10.1515/cclm-2020-0770 |
[6] | NICE Guideline Updates Team. Evidence reviews for cystatin C based equations to estimate GFR in adults, children and young people: chronic kidney disease[M/OL]. London: National Institute for Health and Care Excellence (NICE), 2021. |
[7] |
Medić B, Rovcanin B, Vujovic KS, et al. Evaluation of novel biomarkers of acute kidney injury: the possibilities and limitations[J]. Curr Med Chem, 2016, 23(19): 1981-1997.
pmid: 26860999 |
[8] |
Spahillari A, Parikh CR, Sint K, et al. Serum cystatin C- versus creatinine-based definitions of acute kidney injury following cardiac surgery: a prospective cohort study[J]. Am J Kidney Dis, 2012, 60(6): 922-929.
doi: 10.1053/j.ajkd.2012.06.002 pmid: 22809763 |
[9] |
Schwartz GJ, Haycock GB, Edelmann CM Jr, et al. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine[J]. Pediatrics, 1976, 58(2): 259-263.
pmid: 951142 |
[10] |
Schwartz GJ, Muñoz A, Schneider MF, et al. New equations to estimate GFR in children with CKD[J]. J Am Soc Nephrol, 2009, 20(3): 629-637.
doi: 10.1681/ASN.2008030287 pmid: 19158356 |
[11] |
Pottel H, Hoste L, Dubourg L, et al. An estimated glomerular filtration rate equation for the full age spectrum[J]. Nephrol Dial Transplant, 2016, 31(5): 798-806.
doi: 10.1093/ndt/gfv454 |
[12] |
Björk J, Nyman U, Delanaye P, et al. A novel method for creatinine adjustment makes the revised Lund-Malmö GFR estimating equation applicable in children[J]. Scand J Clin Lab Invest, 2020, 80(6): 456-463.
doi: 10.1080/00365513.2020.1774641 |
[13] |
Pottel H, Björk J, Courbebaisse M, et al. Development and validation of a modified full age spectrum creatinine-based equation to estimate glomerular filtration rate : a cross-sectional analysis of pooled data[J]. Ann Intern Med, 2021, 174(2): 183-191.
doi: 10.7326/M20-4366 pmid: 33166224 |
[14] |
Pierce CB, Muñoz A, Ng DK, et al. Age- and sex-dependent clinical equations to estimate glomerular filtration rates in children and young adults with chronic kidney disease[J]. Kidney Int, 2021, 99(4): 948-956.
doi: 10.1016/j.kint.2020.10.047 |
[15] |
Schwartz GJ, Schneider MF, Maier PS, et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C[J]. Kidney Int, 2012, 82(4): 445-453.
pmid: 22622496 |
[16] |
Filler G, Lepage N. Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula?[J]. Pediatr Nephrol, 2003, 18(10): 981-985.
pmid: 12920638 |
[17] |
Hari P, Ramakrishnan L, Gupta R, et al. Cystatin C-based glomerular filtration rate estimating equations in early chronic kidney disease[J]. Indian Pediatr, 2014, 51(4):273-277.
pmid: 24825263 |
[18] |
Grubb A, Horio M, Hansson LO, et al. Generation of a new cystatin C-based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator[J]. Clin Chem, 2014, 60(7):974-986.
doi: 10.1373/clinchem.2013.220707 pmid: 24829272 |
[19] |
Levey AS, Coresh J, Tighiouart H, et al. Measured and estimated glomerular filtration rate: current status and future directions[J]. Nat Rev Nephrol, 2020, 16(1): 51-64.
doi: 10.1038/s41581-019-0191-y pmid: 31527790 |
[20] |
Björk J, Nyman U, Berg U, et al. Validation of standardized creatinine and cystatin C GFR estimating equations in a large multicentre European cohort of children[J]. Pediatr Nephrol, 2019, 34(6): 1087-1098.
doi: 10.1007/s00467-018-4185-y pmid: 30715595 |
[21] |
Uemura O, Nagai T, Ishikura K, et al. Cystatin C-based equation for estimating glomerular filtration rate in Japanese children and adolescents[J]. Clin Exp Nephrol, 2014, 18(5): 718-725.
doi: 10.1007/s10157-013-0910-9 pmid: 24253614 |
[22] | 王芳, 姚勇, 朱赛楠, 等. 比较不同肾小球滤过率计算方法评价儿童慢性肾脏病肾功能的适用性[J]. 中华儿科杂志, 2010, 48(11): 855-859. |
[23] |
Du Y, Sun TT, Hou L, et al. Applicability of various estimation formulas to assess renal function in Chinese children[J]. World J Pediatr, 2015, 11(4): 346-351.
doi: 10.1007/s12519-014-0532-7 pmid: 25447632 |
[24] | Zheng K, Gong M, Qin Y, et al. Validation of glomerular filtration rate-estimating equations in Chinese children[J]. PLoS One, 2017, 12(7): e0180565. |
[25] |
Tang Y, Hou L, Sun T, et al. Improved equations to estimate GFR in Chinese children with chronic kidney disease[J]. Pediatr Nephrol, 2022. doi: 10.1007/s00467-022-05552-y.
doi: 10.1007/s00467-022-05552-y |
[26] |
Filler G, Priem F, Lepage N, et al. Beta-trace protein, cystatin C, beta(2)-microglobulin, and creatinine compared for detecting impaired glomerular filtration rates in children[J]. Clin Chem, 2002, 48(5): 729-736.
pmid: 11978599 |
[27] |
Witzel SH, Huang SH, Braam B, et al. Estimation of GFR using β-trace protein in children[J]. Clin J Am Soc Nephrol, 2015, 10(3): 401-409.
doi: 10.2215/CJN.04860514 |
[28] |
Freed TA, Coresh J, Inker LA, et al. Validation of a metabolite panel for a more accurate estimation of glomerular filtration rate using quantitative LC-MS/MS[J]. Clin Chem, 2019, 65(3): 406-418.
doi: 10.1373/clinchem.2018.288092 pmid: 30647123 |
[29] |
Dodgshun AJ, Quinlan C, Sullivan MJ. Cystatin C based equation accurately estimates glomerular filtration rate in children with solid and central nervous system tumours: enough evidence to change practice?[J]. Pediatr Blood Cancer, 2016, 63(9): 1535-1538.
doi: 10.1002/pbc.26043 pmid: 27198456 |
[30] |
Kar S, Paglialunga S, Islam R. Cystatin C is a more reliable biomarker for determining eGFR to support drug development studies[J]. J Clin Pharmacol, 2018, 58(10): 1239-1247.
doi: 10.1002/jcph.1132 |
[31] |
Grapin M, Gaillard F, Biebuyck N, et al. The spectrum of kidney function alterations in adolescents with a solitary functioning kidney[J]. Pediatr Nephrol, 2021, 36(10): 3159-3168.
doi: 10.1007/s00467-021-05074-z pmid: 33895898 |
[32] |
Garg N, Poggio ED, Mandelbrot D. The evaluation of kidney function in living kidney donor candidates[J]. Kidney360, 2021, 2(9): 1523-1530.
doi: 10.34067/KID.0003052021 |
[1] | ZOU Liping. Childhood encephalopathy: a group of diseases associated with various diseases [J]. Journal of Clinical Pediatrics, 2023, 41(9): 641-643. |
[2] | ZHANG Weihua, ZOU Liping, REN Haitao, GUAN Hongzhi. Beware of the pitfalls in diagnosis and treatment of autoimmune encephalitis in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 644-649. |
[3] | HOU Chi, CHEN Wenxiong, LIAO Yinting, WU Wenxiao, TIAN Yang, ZHU Haixia, PENG Bingwei, ZENG Yiru, WU Wenlin, CHEN Zongzong, LI Xiaojing. Clinical analysis of autoimmune glial fibrillary acidic protein astrocytopathy in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 656-660. |
[4] | YANG Yating, CAI Yuehao, FANG Qiong, CHEN Lang, CHEN Qiaobin, LIN Zhi, WU Feifei, LIN Meng. Clinical analysis of idiopathic and symptomatic occipital lobe epilepsy in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 668-673. |
[5] | HOU Ruolin, WU Jing, LI Ling. Pediatric autoimmune encephalitis with brain MRI showing meningeal thickening and enhancement [J]. Journal of Clinical Pediatrics, 2023, 41(9): 674-679. |
[6] | WU Yuefang, SUN Yanling, WU Wanshui, DU Shuxu, LI Miao, SUN Liming. Analysis of prognostic factors and survival status of group 4 medulloblastoma in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 686-691. |
[7] | SUN Juan, LI Haiying, JIA Peisheng, WANG Huaili. Clinical analysis of fulminant myocarditis in 12 children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 692-696. |
[8] | Reviewer: WANG Chenhui, Reviser: YANG Hui. Research progress on early screening and diagnosis of Crohn's disease in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 708-714. |
[9] | SHEN Nan, DU Bailu. Strategies for the diagnosis, treatment, and management of invasive fungal infections in children with hematologic neoplasms [J]. Journal of Clinical Pediatrics, 2023, 41(8): 571-577. |
[10] | XU Beixue, LIU Quanbo. Clinical analysis of 195 children with invasive pulmonary fungal infection [J]. Journal of Clinical Pediatrics, 2023, 41(8): 584-588. |
[11] | CHEN Hongyu, LIU Zihao, WANG Heping, LIAO Cuijuan, LI Li, WANG Wenjian, LAI Jianwei. Role of nontypeable Haemophilus influenzae biofilms in chronic pulmonary infection in children [J]. Journal of Clinical Pediatrics, 2023, 41(8): 589-593. |
[12] | KANG Lei, GUO Fang, LI Lifang, BAI Xinfeng, CHENG Caiyun, XU Meixian. Value of metagenomic next-generation sequencing in children with visceral leishmaniasis associated with hemolytic histiocytosis [J]. Journal of Clinical Pediatrics, 2023, 41(8): 594-598. |
[13] | SUN Zhicai, LIU Yuling, LI Xiaolin, PAN Xiaofen. Clinical analysis of 15 children with primary nephrotic syndrome complicated with adrenal crisis [J]. Journal of Clinical Pediatrics, 2023, 41(8): 610-612. |
[14] | WANG Hongxia, PAN Xiang, LU Jun. Report a case of α-ketoadipic aciduria caused by compound heterozygous variant of DHTKD1 gene [J]. Journal of Clinical Pediatrics, 2023, 41(8): 624-628. |
[15] | XI Bixin, HU Qun, LIU Aiguo. Research advances of the bronchiolitis obliterans syndrome following allogeneic hematopoietic stem cell transplant in children [J]. Journal of Clinical Pediatrics, 2023, 41(8): 629-633. |
|