Journal of Clinical Pediatrics ›› 2022, Vol. 40 ›› Issue (12): 955-959.doi: 10.12372/jcp.2022.21e1593
• Continuing Medical Education • Previous Articles
Received:
2021-11-16
Online:
2022-12-15
Published:
2022-12-06
Contact:
WANG Aiping
E-mail:980291119@qq.com
SHI Liyun, WANG Aiping. Research progress on the correlation between growth hormone and gut microbiota[J].Journal of Clinical Pediatrics, 2022, 40(12): 955-959.
[1] | 李论, 李娜, 穆亚平. 重组人生长激素的临床应用和研究进展[J]. 国际儿科学杂志, 2017, 44(8): 547-550. |
[2] | 谢坤霞, 王翠翠, 刘庆. 重组人生长激素对矮小症患儿rs66593747基因位点不同基因型及IGF-1的影响[J]. 西北药学杂志, 2021, 36(1): 113-117. |
[3] |
Kapitan M, Niemiec MJ, Steimle A, et al. Fungi as part of the microbiota and interactions with intestinal bacteria[J]. Curr Top Microbiol Immunol, 2019, 422: 265-301.
doi: 10.1007/82_2018_117 pmid: 30062595 |
[4] |
Zhang N, Wang L, Wei Y. Effects of Bacillus pumilus on growth performance, immunological indicators and gut microbiota of mice[J]. J Anim Physiol Anim Nutr (Berl), 2021, 105(4): 797-805.
doi: 10.1111/jpn.13505 |
[5] |
Yang J, Wang C, Huang K, et al. Compound Lactobacillus sp. administration ameliorates stress and body growth through gut microbiota optimization on weaning piglets[J]. Appl Microbiol Biotechnol, 2020, 104(15): 6749-6765.
doi: 10.1007/s00253-020-10727-4 |
[6] |
Cheng CS, Wei HK, Wang P, et al. Early intervention with faecal microbiota transplantation: an effective means to improve growth performance and the intestinal development of suckling piglets[J]. Animal, 2019, 13(3): 533-541.
doi: 10.1017/S1751731118001611 pmid: 29983136 |
[7] | Humam AM, Loh TC, Foo HL, et al. Effects of feeding different postbiotics produced by Lactobacillus plantarum on growth performance, carcass yield, intestinal morphology, gut microbiota composition, immune status, and growth gene expression in broilers under heat stress[J]. Animals (Basel), 2019, 9(9): 644. |
[8] |
Izuddin WI, Loh TC, Samsudin AA, et al. Effects of postbiotic supplementation on growth performance, ruminal fermentation and microbial profile, blood metabolite and GHR, IGF-1 and MCT-1 gene expression in post-weaning lambs[J]. BMC Vet Res, 2019, 15(1): 315.
doi: 10.1186/s12917-019-2064-9 pmid: 31477098 |
[9] |
Torres-Fuentes C, Golubeva AV, Zhdanov AV, et al. Short-chain fatty acids and microbiota metabolites attenuate ghrelin receptor signaling[J]. FASEB J, 2019, 33(12): 13546-13559.
doi: 10.1096/fj.201901433R pmid: 31545915 |
[10] |
Rahat-Rozenbloom S, Fernandes J, Cheng J, et al. Acute increases in serum colonic short-chain fatty acids elicited by inulin do not increase GLP-1 or PYY responses but may reduce ghrelin in lean and overweight humans[J]. Eur J Clin Nutr, 2017, 71(8): 953-958.
doi: 10.1038/ejcn.2016.249 pmid: 27966574 |
[11] |
Crooks B, Stamataki NS, McLaughlin JT. Appetite, the enteroendocrine system, gastrointestinal disease and obesity[J]. Proc Nutr Soc, 2021, 80(1): 50-58.
doi: 10.1017/S0029665120006965 |
[12] |
Yang CG, Wang WG, Yan J, et al. Gastric motility in ghrelin receptor knockout mice[J]. Mol Med Rep, 2013, 7(1): 83-88.
doi: 10.3892/mmr.2012.1157 |
[13] |
Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach[J]. Nature, 1999, 402(6762): 656-660.
doi: 10.1038/45230 |
[14] |
Yang F, Li J, Pang G, et al. Effects of diethyl phosphate, a non-specific metabolite of organophosphorus pesticides, on serum lipid, hormones, inflammation, and gut microbiota[J]. Molecule, 2019, 24(10): 2003.
doi: 10.3390/molecules24102003 |
[15] | Bo TB, Zhang XY, Wen J, et al. The microbiota-gut-brain interaction in regulating host metabolic adaptation to cold in male Brandt's voles (Lasiopodomys brandtii)[J]. ISME J, 2019, (12): 3037-3053. |
[16] | Yanagi H, Tsuda A, Matsushima M, et al. Changes in the gut microbiota composition and the plasma ghrelin level in patients with Helicobacter pylori-infected patients with eradication therapy[J]. BMJ Open Gastroenterol, 2017, 4(1): e000182. |
[17] |
Kang C, Zhang Y, Zhu X, et al. Healthy subjects differentially respond to dietary capsaicin correlating with specific gut enterotypes[J]. J Clin Endocrinol Metab, 2016, 101(12): 4681-4689.
pmid: 27676396 |
[18] |
Mahana D, Trent CM, Kurtz ZD, et al. Antibiotic perturbation of the murine gut microbiome enhances the adiposity, insulin resistance, and liver disease associated with high-fat diet[J]. Genome Med, 2016, 8(1): 48.
pmid: 27124954 |
[19] |
Salguero MV, Al-Obaide MAI, Singh R, et al. Dysbiosis of Gram-negative gut microbiota and the associated serum lipopolysaccharide exacerbates inflammation in type 2 diabetic patients with chronic kidney disease[J]. Exp Ther Med, 2019, 18(5): 3461-3469.
doi: 10.3892/etm.2019.7943 pmid: 31602221 |
[20] |
Alam A, Leoni G, Wentworth CC, et al. Redox signaling regulates commensal-mediated mucosal homeostasis and restitution and requires formyl peptide receptor 1[J]. Mucosal Immunol. 2014, 7(3): 645-655.
doi: 10.1038/mi.2013.84 pmid: 24192910 |
[21] | Mani BK, Osborne-Lawrence S, Metzger N, et al. Lowering oxidative stress in ghrelin cells stimulates ghrelin secretion[J]. Am J Physiol Endocrinol Metab, 2020, 319(2): E330-E337. |
[22] | Slade E, Williams L, Gagnon J. Hydrogen sulfide suppresses ghrelin secretion in vitro and delays postprandial ghrelin secretion while reducing appetite in mice[J]. Physiol Rep, 2018, 6(19): e13870. |
[23] |
Matsumoto M, Kunisawa A, Hattori T, et al. Free D-amino acids produced by commensal bacteria in the colonic lumen[J]. Sci Rep, 2018, 8(1): 17915.
doi: 10.1038/s41598-018-36244-z pmid: 30559391 |
[24] |
Yin J, Li Y, Han H, et al. Long-term effects of lysine concentration on growth performance, intestinal microbiome, and metabolic profiles in a pig model[J]. Food Funct, 2018, 9(8): 4153-4163.
doi: 10.1039/c8fo00973b pmid: 30058657 |
[25] |
McGavigan AK, O'Hara HC, Amin A, et al. L-cysteine suppresses ghrelin and reduces appetite in rodents and humans[J]. Int J Obes (Lond), 2015, 39(3): 447-455.
doi: 10.1038/ijo.2014.172 |
[26] |
Altindis E, Cai W, Sakaguchi M, et al. Viral insulin-like peptides activate human insulin and IGF-1 receptor signaling: A paradigm shift for host-microbe interactions[J]. Proc Natl Acad Sci U S A, 2018, 115(10): 2461-2466.
doi: 10.1073/pnas.1721117115 pmid: 29467286 |
[27] |
Lu M, Flanagan JU, Langley RJ, et al. Targeting growth hormone function: strategies and therapeutic applications[J]. Signal Transduct Target Ther, 2019, 4: 3.
doi: 10.1038/s41392-019-0036-y |
[28] |
Firmenich CS, Schnepel N, Hansen K, et al. Modulation of growth hormone receptor-insulin-like growth factor 1 axis by dietary protein in young ruminants[J]. Br J Nutr, 2020, 123(6): 652-663.
doi: 10.1017/S0007114519003040 |
[29] | Jensen EA, Young JA, Jackson Z, et al. Growth hormone deficiency and excess alter the gut microbiome in adult male mice[J]. Endocrinology, 2020, 161(4): bqaa026. |
[30] | Jensen EA, Young JA, Jackson Z, et al. Excess growth hormone alters the male mouse gut microbiome in an age-dependent manner[J]. Endocrinology, 2022, 163(7): bqac074. |
[31] | Lin B, Wang M, Gao R, et al. Characteristics of gut microbiota in patients with GH-secreting pituitary adenoma[J]. Microbiol Spectr, 2022, 10(1): e0042521. |
[32] |
Hacioglu A, Gundogdu A, Nalbantoglu U, et al. Gut microbiota in patients with newly diagnosed acromegaly: a pilot cross-sectional study[J]. Pituitary, 2021, 24(4): 600-610.
doi: 10.1007/s11102-021-01137-4 |
[33] | 李嫔. 生长激素受体基因异常及多态性与特发性矮小的关系研究进展[J]. 中华实用儿科临床杂志, 2014, 29(20): 1523-1525. |
[34] | Salazar D, Rey V, Neves JS, et al. Treatment of isolated idiopathic growth hormone deficiency in children and thyroid function: is the need for LT4 supplementation a concern in long-term therapy?[J]. Cureus, 2022, 14(1): e21722. |
[35] |
Bell J, Parker KL, Swinford RD, et al. Long-term safety of recombinant human growth hormone in children[J]. J Clin Endocrinol Metab, 2010, 95(1): 167-177.
doi: 10.1210/jc.2009-0178 pmid: 19906787 |
[36] | Tidblad A, Bottai M, Kieler H, et al. Association of childhood growth hormone treatment with long-term cardiovascular morbidity[J]. JAMA Pediatr, 2021, 175(2): e205199. |
[1] | ZOU Liping. Childhood encephalopathy: a group of diseases associated with various diseases [J]. Journal of Clinical Pediatrics, 2023, 41(9): 641-643. |
[2] | ZHANG Weihua, ZOU Liping, REN Haitao, GUAN Hongzhi. Beware of the pitfalls in diagnosis and treatment of autoimmune encephalitis in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 644-649. |
[3] | HOU Chi, CHEN Wenxiong, LIAO Yinting, WU Wenxiao, TIAN Yang, ZHU Haixia, PENG Bingwei, ZENG Yiru, WU Wenlin, CHEN Zongzong, LI Xiaojing. Clinical analysis of autoimmune glial fibrillary acidic protein astrocytopathy in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 656-660. |
[4] | YANG Yating, CAI Yuehao, FANG Qiong, CHEN Lang, CHEN Qiaobin, LIN Zhi, WU Feifei, LIN Meng. Clinical analysis of idiopathic and symptomatic occipital lobe epilepsy in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 668-673. |
[5] | HOU Ruolin, WU Jing, LI Ling. Pediatric autoimmune encephalitis with brain MRI showing meningeal thickening and enhancement [J]. Journal of Clinical Pediatrics, 2023, 41(9): 674-679. |
[6] | WU Yuefang, SUN Yanling, WU Wanshui, DU Shuxu, LI Miao, SUN Liming. Analysis of prognostic factors and survival status of group 4 medulloblastoma in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 686-691. |
[7] | SUN Juan, LI Haiying, JIA Peisheng, WANG Huaili. Clinical analysis of fulminant myocarditis in 12 children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 692-696. |
[8] | Reviewer: WANG Chenhui, Reviser: YANG Hui. Research progress on early screening and diagnosis of Crohn's disease in children [J]. Journal of Clinical Pediatrics, 2023, 41(9): 708-714. |
[9] | SHEN Nan, DU Bailu. Strategies for the diagnosis, treatment, and management of invasive fungal infections in children with hematologic neoplasms [J]. Journal of Clinical Pediatrics, 2023, 41(8): 571-577. |
[10] | XU Beixue, LIU Quanbo. Clinical analysis of 195 children with invasive pulmonary fungal infection [J]. Journal of Clinical Pediatrics, 2023, 41(8): 584-588. |
[11] | CHEN Hongyu, LIU Zihao, WANG Heping, LIAO Cuijuan, LI Li, WANG Wenjian, LAI Jianwei. Role of nontypeable Haemophilus influenzae biofilms in chronic pulmonary infection in children [J]. Journal of Clinical Pediatrics, 2023, 41(8): 589-593. |
[12] | KANG Lei, GUO Fang, LI Lifang, BAI Xinfeng, CHENG Caiyun, XU Meixian. Value of metagenomic next-generation sequencing in children with visceral leishmaniasis associated with hemolytic histiocytosis [J]. Journal of Clinical Pediatrics, 2023, 41(8): 594-598. |
[13] | SUN Zhicai, LIU Yuling, LI Xiaolin, PAN Xiaofen. Clinical analysis of 15 children with primary nephrotic syndrome complicated with adrenal crisis [J]. Journal of Clinical Pediatrics, 2023, 41(8): 610-612. |
[14] | WANG Hongxia, PAN Xiang, LU Jun. Report a case of α-ketoadipic aciduria caused by compound heterozygous variant of DHTKD1 gene [J]. Journal of Clinical Pediatrics, 2023, 41(8): 624-628. |
[15] | XI Bixin, HU Qun, LIU Aiguo. Research advances of the bronchiolitis obliterans syndrome following allogeneic hematopoietic stem cell transplant in children [J]. Journal of Clinical Pediatrics, 2023, 41(8): 629-633. |
|