[1] |
Msall M, Batshaw ML, Suss R, et al. Neurologic outcome in children with inborn errors of urea synthesis. Outcome of urea-cycle enzymopathies[J]. N Engl J Med, 1984, 310 (23) : 1500-1505.
doi: 10.1056/NEJM198406073102304
|
[2] |
Eiroa H, Durand C, Szlago M, et al. Initial management of acute hyperammonemia in pediatrics[J]. Arch Argent Pediatr, 2022: e202202614.
|
[3] |
陈哲晖, 董慧, 黄新文, 等. 尿素循环障碍的三级防控专家共识[J]. 中国实用儿科杂志, 2021, 36(10): 725-730.
|
[4] |
郝虎, 肖昕. 尿素循环障碍及高氨血症的诊断与处理[J]. 中国小儿急救医学, 2014, 21(6): 354-357.
|
[5] |
张尧, 杨艳玲. 重视高氨血症的早期诊断与精准干预[J]. 重庆医科大学学报, 2022, 47(3): 285-289.
|
[6] |
Savy N, Brossier D, Brunel-Guitton C, et al. Acute pediatric hyperammonemia: current diagnosis and management strategies[J]. Hepat Med, 2018, 10: 105-115.
|
[7] |
Paprocka J, Jamroz E. Hyperammonemia in children: on the crossroad of different disorders[J]. Neurologist, 2012, 18(5): 261-265.
doi: 10.1097/NRL.0b013e318266f58a
pmid: 22931730
|
[8] |
中国医师协会医学遗传医师分会临床生化专业委员会, 中华医学会儿科学分会内分泌遗传代谢学组, 中国妇幼保健协会儿童疾病和保健分会遗传代谢学组, 等. 中国尿素循环障碍诊断治疗和管理指南[J]. 中华儿科杂志, 2022, 60(11): 1118-1126.
|
[9] |
Silvera-Ruiz SM, Arranz JA, Häberle J, et al. Urea cycle disorders in argentine patients: clinical presentation, biochemical and genetic findings[J]. Orphanet J Rare Dis, 2019, 14(1): 203.
doi: 10.1186/s13023-019-1177-3
pmid: 31426867
|
[10] |
Waisbren SE, Stefanatos AK, Kok TMY, et al. Neuro-psychological attributes of urea cycle disorders: a systematic review of the literature[J]. J Inherit Metab Dis, 2019, 42(6): 1176-1191.
doi: 10.1002/jimd.12146
pmid: 31268178
|
[11] |
郭冰冰, 彭磊, 李茜, 等. 徐州地区新生儿希特林蛋白缺乏症筛查和基因突变分析[J]. 中华新生儿科杂志, 2022, 37(2): 97-103.
|
[12] |
Kikuchi A, Arai-Ichinoi N, Sakamoto O, et al. Simple and rapid genetic testing for citrin deficiency by screening 11 prevalent mutations in SLC25A13[J]. Mol Genet Metab, 2012, 105(4): 553-558.
doi: 10.1016/j.ymgme.2011.12.024
pmid: 22277121
|
[13] |
Posset R, Garbade SF, Boy N, et al. Additional individual contributors of the UCDC and the E-IMD consortium. Transatlantic combined and comparative data analysis of 1095 patients with urea cycle disorders-A successful strategy for clinical research of rare diseases[J]. J Inherit Metab Dis, 2019, 42(1): 93-106.
doi: 10.1002/jimd.12031
pmid: 30740724
|
[14] |
Häberle J, Burlina A, Chakrapani A, et al. Suggested guidelines for the diagnosis and management of urea cycle disorders: First revision[J]. J Inherit Metab Dis, 2019, 42(6): 1192-1230.
doi: 10.1002/jimd.12100
pmid: 30982989
|
[15] |
Hayasaka K. Metabolic basis and treatment of citrin deficiency[J]. J Inherit Metab Dis, 2021, 44(1): 110-117.
doi: 10.1002/jimd.v44.1
|
[16] |
Zhang MH, Gong JY, Wang JS. Citrin deficiency presenting as acute liver failure in an eight-month-old infant[J]. World J Gastroenterol, 2015, 21(23): 7331-7334.
doi: 10.3748/wjg.v21.i23.7331
|
[17] |
陈瑞. Citrin缺陷引起的婴儿肝内胆汁淤积症突变地域特征及死亡病例分析[D]. 上海: 复旦大学, 2013.
|
[18] |
Häberle J. Primary hyperammonaemia: current diagnostic and therapeutic strategies[J]. J Mother Child, 2020, 24(2): 32-38.
doi: 10.34763/jmotherandchild.20202402si.2015.000006
pmid: 33179600
|
[19] |
Matoori S, Leroux JC. Recent advances in the treatment of hyperammonemia[J]. Adv Drug Deliv Rev, 2015, 90: 55-68.
doi: 10.1016/j.addr.2015.04.009
|
[20] |
Calligaris L, Vidoni A, Bruno I, et al. Efficacy of clonidine in hyperammonemia induced hyperexcitability syndrome[J]. Paediatr Anaesth, 2013, 23(2): 202-204.
doi: 10.1111/pan.12088
pmid: 23289776
|
[21] |
Matoori S, Leroux JC. Recent advances in the treatment of hyperammonemia[J]. Adv Drug Deliv Rev, 2015, 90: 55-68.
doi: 10.1016/j.addr.2015.04.009
|
[22] |
Jalan R, Olde Damink SW, Deutz NE, et al. Moderate hypothermia in patients with acute liver failure and uncontrolled intracranial hypertension[J]. Gastroe-nterology, 2004, 127(5): 1338-1346.
|
[23] |
Cunningham SC, Kok CY, Dane AP, et al. Induction and prevention of severe hyperammonemia in the spfash mouse model of ornithine transcarbamylase deficiency using shRNA and rAAV-mediated gene delivery[J]. Mol Ther, 19(5): 854-859.
doi: 10.1038/mt.2011.32
|
[24] |
Wang L, Bell P, Morizono H, et al. AAV gene therapy corrects OTC deficiency and prevents liver fibrosis in aged OTC-knock out heterozygous mice[J]. Mol Genet Metab, 2017, 120(4): 299-305.
doi: S1096-7192(17)30024-0
pmid: 28283349
|
[25] |
Wang L, Yang Y, Breton C, et al. A mutation-independent CRISPR-Cas9-mediated gene targeting approach to treat a murine model of ornithine transcarbamylase deficiency[J]. Sci Adv, 2020, 6(7): eaax5701.
doi: 10.1126/sciadv.aax5701
|
[26] |
van Wenum M, Adam AA, Hakvoort TB, et al. Selecting cells for bioartificial liver devices and the importance of a 3D culture environment: a functional comparison between the HepaRG and C3A cell lines[J]. Int J Biol Sci, 2016, 12(8): 964-978.
doi: 10.7150/ijbs.15165
pmid: 27489500
|