[1] |
Mercuri E, Sumner CJ, Muntoni F, et al. Spinal muscular atrophy[J]. Nat Rev Dis Primers, 2022, 8(1): 52.
doi: 10.1038/s41572-022-00380-8
pmid: 35927425
|
[2] |
Xing X, Liu X, Li X, et al. Insights into spinal muscular atrophy from molecular biomarkers[J]. Neural Regen Res, 2025, 20(7): 1849-1863.
|
[3] |
杨军林, 隋文渊, 张天元. 脊髓性肌萎缩症合并脊柱侧凸的临床诊治[J]. 临床儿科杂志, 2022, 40(3): 161-164.
|
|
Yang JL, Sui WY, Zhang TY. Clinical diagnosis and treatment of spinal muscular atrophy with scoliosis[J]. Linchuang Erke Zazhi, 2022, 40(3): 161-164.
|
[4] |
Mercuri E, Finkel RS, Muntoni F, et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care[J]. Neuromuscul Disord, 2018, 28(2): 103-115.
|
[5] |
Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study[J]. Lancet, 2016, 388(10063): 3017-3026.
doi: S0140-6736(16)31408-8
pmid: 27939059
|
[6] |
李海冰, 夏雨, 叶文松, 等. 脊髓性肌萎缩症髋关节和脊柱畸形的初步研究[J]. 中华小儿外科杂志, 2020, 41(10): 926-932.
|
|
Li MB, Xia Y, Ye WS, et al. Preliminary research of hipor spinal deformity in children with spinal muscular atrophy[J]. Zhonghua Xiaoer Waike Zazhi, 2020, 41(10): 926-932.
|
[7] |
Glanzman AM, O'Hagen JM, McDermott MP, et al. Validation of the expanded Hammersmith functional notor scale in spinal muscular atrophy type II and III[J]. J Child Neurol, 2011, 26(12): 1499-1507.
doi: 10.1177/0883073811420294
pmid: 21940700
|
[8] |
Mazzone ES, Mayhew A, Montes J, et al. Revised upper limb module for spinal muscular atrophy: development of a new module[J]. Muscle Nerve, 2017, 55(6): 869-874.
doi: 10.1002/mus.25430
pmid: 27701745
|
[9] |
Trundell D, Skalicky A, Staunton H, et al. Development of the SMA independence scale-upper limb module (SMAIS-ULM): a novel scale for individuals with Type 2 and non-ambulant Type 3 SMA[J]. J Neurol Sci, 2022, 432: 120059.
|
[10] |
Glanzman AM, McDermott MP, Montes J, et al. Validation of the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND)[J]. Pediatr Phys Ther, 2011, 23(4): 322-326.
doi: 10.1097/PEP.0b013e3182351f04
pmid: 22090068
|
[11] |
Łusakowska A, Wójcik A, Frączek A, et al. Long-term nusinersen treatment across a wide spectrum of spinal muscular atrophy severity: a real-world experience[J]. Orphanet J Rare Dis, 2023, 18(1): 230.
doi: 10.1186/s13023-023-02769-4
pmid: 37542300
|
[12] |
Vázquez-Costa JF, Povedano M, Nascimiento-Osorio AE, et al. Validation of motor and functional scales for the evaluation of adult patients with 5q spinal muscular atrophy[J]. Eur J Neurol, 2022, 29(12): 3666-3675.
doi: 10.1111/ene.15542
pmid: 36047967
|
[13] |
Vázquez-Costa JF, Branas-Pampillón M, Medina-Cantillo J, et al. Validation of a set of instruments to assess patient- and caregiver-oriented measurements in spinal muscular atrophy: results of the SMA-TOOL study[J]. Neurol Ther, 2023, 12(1): 89-105.
|
[14] |
Mercuri E, Deconinck N, Mazzone ES, et al. Safety and efficacy of once-daily risdiplam in type 2 and non-ambulant type 3 spinal muscular atrophy (SUNFISH part 2): a phase 3, double-blind, randomised, placebo-controlled trial[J]. Lancet Neurol, 2022, 21(1): 42-52.
doi: 10.1016/S1474-4422(21)00367-7
pmid: 34942136
|
[15] |
Chiriboga CA, Bruno C, Duong T, et al. JEWELFISH: 24-month results from an open-label study in non-treatment-naïve patients with SMA receiving treatment with risdiplam[J]. J Neurol, 2024, 271(8): 4871-4884.
doi: 10.1007/s00415-024-12318-z
pmid: 38733387
|
[16] |
Alves CRR, Petrillo M, Spellman R, et al. Implications of circulating neurofilaments for spinal muscular atrophy treatment early in life: a case series[J]. Mol Ther Methods Clin Dev, 2021, 23: 524-538.
|
[17] |
Parnetti L, Gaetani L, Di Filippo M. Serum neurofilament light chain as a preclinical marker of neurodegeneration[J]. Lancet Neurol, 2019, 18(12): 1070-1071.
doi: S1474-4422(19)30405-3
pmid: 31701888
|
[18] |
Finkel RS, Ryan MM, Pascual Pascual SI, et al. Scientific rationale for a higher dose of nusinersen[J]. Ann Clin Transl Neurol, 2022, 9(6): 819-829.
|
[19] |
Reilly A, Chehade L, Kothary R. Curing SMA: Are we there yet?[J]. Gene Ther, 2023, 30(1-2): 8-17.
|
[20] |
Groen EJN, Talbot K, Gillingwater TH. Advances in therapy for spinal muscular atrophy: promises and challenges[J]. Nat Rev Neurol, 2018, 14(4): 214-224.
doi: 10.1038/nrneurol.2018.4
pmid: 29422644
|
[21] |
Lapp HS, Freigang M, Hagenacker T, et al. Biomarkers in 5q-associated spinal muscular atrophy-a narrative review[J]. J Neurol, 2023, 270(9): 4157-4178.
doi: 10.1007/s00415-023-11787-y
pmid: 37289324
|
[22] |
Messina S, Pane M, Sansone V, et al. Expanded access program with nusinersen in SMA type I in Italy: strengths and pitfalls of a successful experience[J]. Neuromuscul Disord, 2017, 27(12): 1084-1086.
|
[23] |
Labianca L, Weinstein SL. Scoliosis and spinal muscular atrophy in the new world of medical therapy: providing lumbar access for intrathecal treatment in patients previously treated or undergoing spinal instrumentation and fusion[J]. J Pediatr Orthop B, 2019, 28(4): 393-396.
doi: 10.1097/BPB.0000000000000632
pmid: 30932967
|
[24] |
Machida S, Miyagi M, Saito W, et al. Posterior spinal correction and fusion durgery in patients with spinal muscular atrophy-associated scoliosis for whom treatment with nusinersen was planned[J]. Spine Surg Relat Res, 2021, 5(2): 109-113.
doi: 10.22603/ssrr.2020-0091
pmid: 33842719
|
[25] |
Wang Z, Feng E, Jiao Y, et al. Unilateral interlaminar fenestration on the convex side provides a reliable access for intrathecal administration of nusinersen in spinal muscular atrophy: a retrospective study[J]. Orphanet J Rare Dis, 2023, 18(1): 369.
doi: 10.1186/s13023-023-02972-3
pmid: 38031122
|
[26] |
Carson VJ, Young M, Brigatti KW, et al. Nusinersen by subcutaneous intrathecal catheter for symptomatic spinal muscular atrophy patients with complex spine anatomy[J]. Muscle Nerve, 2022, 65(1): 51-59.
|