Journal of Clinical Pediatrics ›› 2023, Vol. 41 ›› Issue (3): 229-234.doi: 10.12372/jcp.2023.22e0943
• Literature Review • Previous Articles Next Articles
Reviewer: RUAN Xuehua, Reviser: SUN Jing, SUN Kun
Received:
2022-07-13
Online:
2023-03-15
Published:
2023-03-10
RUAN Xuehua, SUN Jing, SUN Kun. Research progress on environmental factors and congenital heart disease[J].Journal of Clinical Pediatrics, 2023, 41(3): 229-234.
[1] | 中华人民共和国卫生部. 中国出生缺陷防治报告(2012)[M]. 北京, 2012: 2-5. |
[2] |
Lim TB, Foo SYR, Chen CK. The Role of epigenetics in congenital heart disease[J]. Genes (Basel), 2021, 12(3): 390.
doi: 10.3390/genes12030390 |
[3] | 《中国心血管健康与疾病报告》编写组. 《中国心血管健康与疾病报告2020》要点解读[J]. 中国心血管杂志, 2021, 26(3): 209-218. |
[4] |
Deng C, Pu J, Deng Y, et al. Association between maternal smoke exposure and congenital heart defects from a case-control study in China[J]. Sci Rep, 2022, 12(1): 14973.
doi: 10.1038/s41598-022-18909-y pmid: 36056058 |
[5] |
Zhao L, Chen L, Yang T, et al. Parental smoking and the risk of congenital heart defects in offspring: an updated meta-analysis of observational studies[J]. Eur J Prev Cardiol, 2020, 27(12): 1284-1293.
doi: 10.1177/2047487319831367 pmid: 30905164 |
[6] | Cheng W, Zhou R, Feng Y, et al. Mainstream smoke and sidestream smoke affect the cardiac differentiation of mouse embryonic stem cells discriminately[J]. Toxicology, 2016, 357-358: 1-10. |
[7] |
Jiang XY, Feng YL, Ye LT, et al. Inhibition of Gata4 and Tbx5 by nicotine-mediated DNA methylation in myocardial differentiation[J]. Stem Cell Reports, 2017, 8(2): 290-304.
doi: 10.1016/j.stemcr.2016.12.016 |
[8] |
Li D, Xu W, Qiu Y, et al. Maternal air pollution exposure and neonatal congenital heart disease: a multi-city cross-sectional study in eastern China[J]. Int J Hyg Environ Health, 2022, 240: 113898.
doi: 10.1016/j.ijheh.2021.113898 |
[9] |
Zhang W, Yang Y, Liu Y, et al. Associations between congenital heart disease and air pollutants at different gestational weeks: a time-series analysis[J]. Environ Geochem Health, 2022. doi: 10.1007/s10653-022-01315-8.
doi: 10.1007/s10653-022-01315-8 |
[10] |
Sun J, Wang J, Yang J, et al. Association between maternal exposure to indoor air pollution and offspring congenital heart disease: a case-control study in East China[J]. BMC Public Health, 2022, 22(1): 767.
doi: 10.1186/s12889-022-13174-0 pmid: 35428227 |
[11] | Cai J, Zhao Y, Liu P, et al. Exposure to particulate air pollution during early pregnancy is associated with placental DNA methylation[J]. Sci Total Environ, 2017, (607-608): 1103-1108. |
[12] |
Karoui A, Crochemore C, Harouki N, et al. Nitrogen dioxide inhalation exposures induce cardiac mitochondrial reactive oxygen species production, impair mitochondrial function and promote coronary endothelial dysfunction[J]. Int J Environ Res Public Health, 2020, 17(15): 5526.
doi: 10.3390/ijerph17155526 |
[13] |
Hettfleisch K, Bernardes LS, Carvalho MA, et al. Short-term exposure to urban air pollution and influences on placental vascularization indexes[J]. Environ Health Perspect, 2017, 125(4): 753-759.
doi: 10.1289/EHP300 |
[14] |
Rappazzo KM, Warren JL, Meyer RE, et al. Maternal residential exposure to agricultural pesticides and birth defects in a 2003 to 2005 North Carolina birth cohort[J]. Birth Defects Res A Clin Mol Teratol, 2016, 106(4): 240-249.
doi: 10.1002/bdra.23479 |
[15] |
Carmichael SL, Yang W, Roberts E, et al. Residential agricultural pesticide exposures and risk of selected congenital heart defects among offspring in the San Joaquin Valley of California[J]. Environ Res, 2014, 135: 133-138.
doi: 10.1016/j.envres.2014.08.030 pmid: 25262086 |
[16] | Abdollahi M, Ranjbar A, Shadnia S, et al. Pesticides and oxidative stress: a review[J]. Med Sci Monit, 2004, 10(6): RA141-RA147. |
[17] |
Ou Y, Bloom MS, Nie Z, et al. Associations between toxic and essential trace elements in maternal blood and fetal congenital heart defects[J]. Environ Int, 2017, 106: 127-134.
doi: S0160-4120(16)31042-X pmid: 28645012 |
[18] |
Sun J, Mao B, Wu Z, et al. Relationship between maternal exposure to heavy metal titanium and offspring congenital heart defects in Lanzhou, China: a nested case-control study[J]. Front Public Health, 2022, 10: 946439.
doi: 10.3389/fpubh.2022.946439 |
[19] |
Wang M, Tian Y, Yu P, et al. Association between congenital heart defects and maternal manganese and iron concentrations: a case-control study in China[J]. Environ Sci Pollut Res Int, 2022, 29(18): 26950-26959.
doi: 10.1007/s11356-021-17054-9 |
[20] |
Zhang N, Liu Z, Tian X, et al. Barium exposure increases the risk of congenital heart defects occurrence in offspring[J]. Clin Toxicol (Phila), 2018, 56(2): 132-139.
doi: 10.1080/15563650.2017.1343479 pmid: 28705031 |
[21] | 邱依聆, 陈乐, 江燕萍. 重金属暴露影响DNA甲基化并导致先天性心脏病发生的研究进展[J]. 实用医学杂志, 2021, 37(5): 692-695. |
[22] |
Lin S, Lin Z, Ou Y, et al. Maternal ambient heat exposure during early pregnancy in summer and spring and congenital heart defects - a large US population-based, case-control study[J]. Environ Int, 2018, 118: 211-221.
doi: S0160-4120(18)30280-0 pmid: 29886237 |
[23] |
Yu X, Miao H, Zeng Q, et al. Associations between ambient heat exposure early in pregnancy and risk of congenital heart defects: a large population-based study[J]. Environ Sci Pollut Res Int, 2022, 29(5): 7627-7638.
doi: 10.1007/s11356-021-16237-8 |
[24] |
Auger N, Fraser WD, Sauve R, et al. Risk of congenital heart defects after ambient heat exposure early in pregnancy[J]. Environ Health Perspect, 2017, 125(1): 8-14.
doi: 10.1289/EHP171 |
[25] |
Jiang W, Liu Z, Ni B, et al. Independent and interactive effects of air pollutants and ambient heat exposure on congenital heart defects[J]. Reprod Toxicol, 2021, 104: 106-113.
doi: 10.1016/j.reprotox.2021.07.007 pmid: 34311057 |
[26] |
Hutson MR, Keyte AL, Hernández-Morales M, et al. Temperature-activated ion channels in neural crest cells confer maternal fever-associated birth defects[J]. Sci Signal, 2017, 10(500): eaal4055.
doi: 10.1126/scisignal.aal4055 |
[27] | 曹晨, 沈艳, 顾宁. 电磁辐射对人体健康影响的多组学研究进展[J]. 南京医科大学学报(社会科学版), 2022, 22(4): 318-324 |
[28] |
Zhao D, Guo L, Zhang R, et al. Risk of congenital heart disease due to exposure to common electrical appliances during early pregnancy: a case-control study[J]. Environ Sci Pollut Res Int, 2021, 28(4): 4739-4748.
doi: 10.1007/s11356-020-10852-7 |
[29] |
Morton LM, Karyadi DM, Stewart C, et al. Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident[J]. Science, 2021, 372(6543): eabg2538.
doi: 10.1126/science.abg2538 |
[30] |
Hou Q, Wang M, Wu S, et al. Oxidative changes and apoptosis induced by 1800-MHz electromagnetic radiation in NIH/3T3 cells[J]. Electromagn Biol Med, 2015, 34(1): 85-92.
doi: 10.3109/15368378.2014.900507 pmid: 24665905 |
[31] |
Kim JH, Jeon S, Choi HD, et al. Exposure to longterm evolution radiofrequency electromagnetic fields decreases neuroblastoma cell proliferation via akt/mtormediated cellular senescence[J]. J Toxicol Environ Health A, 2021, 84(20): 846-857.
doi: 10.1080/15287394.2021.1944944 |
[32] |
Øyen N, Diaz LJ, Leirgul E, et al. Prepregnancy diabetes and offspring risk of congenital heart disease: a nationwide cohort study[J]. Circulation, 2016, 133(23): 2243-2253.
doi: 10.1161/CIRCULATIONAHA.115.017465 pmid: 27166384 |
[33] |
Chen ZY, Mao SF, Guo LH, et al. Effect of maternal pregestational diabetes mellitus on congenital heart diseases[J]. World J Pediatr, 2022. doi: 10.1007/s12519-022-00582-w.
doi: 10.1007/s12519-022-00582-w |
[34] |
Zhang S, Qiu X, Wang T, et al. Hypertensive disorders in pregnancy are associated with congenital heart defects in offspring: a systematic review and meta-analysis[J]. Front Cardiovasc Med, 2022, 9: 842878.
doi: 10.3389/fcvm.2022.842878 |
[35] |
Yang G, Deng X, Xiao J, et al. Maternal fever during preconception and conception is associated with congenital heart diseases in offspring: an updated meta-analysis of observational studies[J]. Medicine (Baltimore), 2021, 100(9): e24899.
doi: 10.1097/MD.0000000000024899 |
[36] |
Wang T, Li Q, Chen L, et al. Maternal Viral infection in early pregnancy and risk of congenital heart disease in offspring: a prospective cohort study in central China[J]. Clin Epidemiol, 2022, 14: 71-82.
doi: 10.2147/CLEP.S338870 pmid: 35082532 |
[37] |
Sun M, Zhang S, Li Y, et al. Effect of maternal antidepressant use during the pre-pregnancy/early pregnancy period on congenital heart disease: a prospective cohort study in central China[J]. Front Cardiovasc Med, 2022, 9: 916882.
doi: 10.3389/fcvm.2022.916882 |
[38] |
Saad H, Sinclair M, Bunting B. Maternal sociodemographic characteristics, early pregnancy behaviours, and livebirth outcomes as congenital heart defects risk factors - Northern Ireland 2010-2014[J]. BMC Pregnancy Childbirth, 2021, 21(1): 759.
doi: 10.1186/s12884-021-04223-4 |
[39] |
Crider KS, Qi YP, Yeung LF, et al. Folic acid and the prevention of birth defects: 30 years of opportunity and controversies[J]. Annu Rev Nutr. 2022, 42: 423-452.
doi: 10.1146/annurev-nutr-043020-091647 pmid: 35995050 |
[40] |
Qu Y, Lin S, Zhuang J, et al. First-trimester maternal folic acid supplementation reduced risks of severe and most congenital heart diseases in offspring: a large case-control study[J]. J Am Heart Assoc, 2020, 9(13): e015652.
doi: 10.1161/JAHA.119.015652 |
[41] |
Wang D, Jin L, Zhang J, et al. Maternal periconceptional folic acid supplementation and risk for fetal congenital heart defects[J]. J Pediatr, 2022, 240: 72-78.
doi: 10.1016/j.jpeds.2021.09.004 |
[42] |
Tang LS, Wlodarczyk BJ, Santillano DR, et al. Deve-lopmental consequences of abnormal folate transport during murine heart morphogenesis[J]. Birth Defects Res A Clin Mol Teratol, 2004, 70: 449-458.
doi: 10.1002/bdra.20043 |
[1] | YU Hui. Resistance mechanism and treatment of carbapenem resistant Pseudomonas aeruginosa [J]. Journal of Clinical Pediatrics, 2023, 41(8): 561-565. |
[2] | ZHU Xiaoli, YANG Qianli, WANG Bo, TA Shengjun, ZHAO Xueli, LI Jing, CHENG Shengquan, LIU Liwen. Genotypes and clinical phenotypes of Noonan syndrome in children with hypertrophic cardiomyopathy [J]. Journal of Clinical Pediatrics, 2023, 41(2): 125-129. |
[3] | CHEN Yanhua, YIN Dan, ZHENG Ming, LYU Tiewei, YI Qijian, LI Mi, XIANG Ping. Efficacy evaluation on transcatheter closure of patent ductus arteriosus with mitral regurgitation in children [J]. Journal of Clinical Pediatrics, 2022, 40(7): 517-521. |
[4] | XIA Ying, LUO Jian. Research progress of airway mucus hypersecretion in children [J]. Journal of Clinical Pediatrics, 2022, 40(12): 950-955. |
[5] | CHEN Yu, XU Weihong, WANG Siyuan. Establishment and evaluation of hypothermia nomogram after cardiopulmonary bypass in children with congenital heart disease [J]. Journal of Clinical Pediatrics, 2021, 39(9): 682-. |
[6] | CHEN Yinghui, ZHANG Qi. The overview of the molecular mechanism regulating the closure of patent ductus arteriosus [J]. Journal of Clinical Pediatrics, 2021, 39(11): 869-. |
[7] | WANG Guixi, SUN Kun, KONG Linghui, et al. Value of SNP array analysis in diagnosis of fetal congenital heart disease [J]. Journal of Clinical Pediatrics, 2021, 39(10): 726-. |
[8] | ZHOU Yunguo, ZHANG Zheng, XU Fei, et al. Effect of ventricular septal defect occluder in the treatment of peculiar shaped patent ductus arteriosus in infants [J]. Journal of Clinical Pediatrics, 2020, 38(9): 679-. |
[9] | FU Xingpeng, YE Jingjing, YU Jin, et al. Ultrasonographic diagnosis of 42 children with congenital heart disease complicated with infectious endocarditis [J]. Journal of Clinical Pediatrics, 2020, 38(2): 129-. |
[10] | WANG Yanyan, WU Jin. Research progress of TLR4 in neonatal necrotizing enterocolitis [J]. Journal of Clinical Pediatrics, 2020, 38(11): 877-. |
[11] | WANG Zhili, LUO Siying, YI Qian, et al. Application of continuous positive airway pressure in children with congenital heart disease combined with severe pneumonia and cardiac insufficiency [J]. Journal of Clinical Pediatrics, 2020, 38(1): 10-. |
[12] | WANG Yefeng, HU Yuan, YANG Zhou, et al. Interventional therapy and follow-up analysis of congenital heart disease complicated with left ventricular non-compaction in children [J]. Journal of Clinical Pediatrics, 2020, 38(1): 49-. |
[13] | XU Mengmeng1, XU Yuejuan1, CHEN Sun1, LI Fen2, SUN Kun1. Mutations in the coding regions of DNAI1 and DNAH5 genes in heterotaxy syndrome in children [J]. Journal of Clinical Pediatrics, 2019, 37(7): 494-. |
[14] | YANG Shuting, LI Mei, JIA Chunying, et al. Xia-Gibbs syndrome in a child caused by a de novo AHDC1 mutation and literature review [J]. Journal of Clinical Pediatrics, 2019, 37(11): 847-. |
[15] | ZHOU Shuang, SHI Xin, CHEN Sun, YU Yu. Advances in the study of environment factors on DNA methylation and its association with congenital heart diseases [J]. , 2018, 36(8): 630-. |
|