Journal of Clinical Pediatrics ›› 2023, Vol. 41 ›› Issue (3): 229-234.doi: 10.12372/jcp.2023.22e0943
• Literature Review • Previous Articles Next Articles
Reviewer: RUAN Xuehua, Reviser: SUN Jing, SUN Kun
Received:
2022-07-13
Published:
2023-03-15
Online:
2023-03-10
RUAN Xuehua, SUN Jing, SUN Kun. Research progress on environmental factors and congenital heart disease[J].Journal of Clinical Pediatrics, 2023, 41(3): 229-234.
[1] | 中华人民共和国卫生部. 中国出生缺陷防治报告(2012)[M]. 北京, 2012: 2-5. |
[2] |
Lim TB, Foo SYR, Chen CK. The Role of epigenetics in congenital heart disease[J]. Genes (Basel), 2021, 12(3): 390.
doi: 10.3390/genes12030390 |
[3] | 《中国心血管健康与疾病报告》编写组. 《中国心血管健康与疾病报告2020》要点解读[J]. 中国心血管杂志, 2021, 26(3): 209-218. |
[4] |
Deng C, Pu J, Deng Y, et al. Association between maternal smoke exposure and congenital heart defects from a case-control study in China[J]. Sci Rep, 2022, 12(1): 14973.
doi: 10.1038/s41598-022-18909-y pmid: 36056058 |
[5] |
Zhao L, Chen L, Yang T, et al. Parental smoking and the risk of congenital heart defects in offspring: an updated meta-analysis of observational studies[J]. Eur J Prev Cardiol, 2020, 27(12): 1284-1293.
doi: 10.1177/2047487319831367 pmid: 30905164 |
[6] | Cheng W, Zhou R, Feng Y, et al. Mainstream smoke and sidestream smoke affect the cardiac differentiation of mouse embryonic stem cells discriminately[J]. Toxicology, 2016, 357-358: 1-10. |
[7] |
Jiang XY, Feng YL, Ye LT, et al. Inhibition of Gata4 and Tbx5 by nicotine-mediated DNA methylation in myocardial differentiation[J]. Stem Cell Reports, 2017, 8(2): 290-304.
doi: 10.1016/j.stemcr.2016.12.016 |
[8] |
Li D, Xu W, Qiu Y, et al. Maternal air pollution exposure and neonatal congenital heart disease: a multi-city cross-sectional study in eastern China[J]. Int J Hyg Environ Health, 2022, 240: 113898.
doi: 10.1016/j.ijheh.2021.113898 |
[9] |
Zhang W, Yang Y, Liu Y, et al. Associations between congenital heart disease and air pollutants at different gestational weeks: a time-series analysis[J]. Environ Geochem Health, 2022. doi: 10.1007/s10653-022-01315-8.
doi: 10.1007/s10653-022-01315-8 |
[10] |
Sun J, Wang J, Yang J, et al. Association between maternal exposure to indoor air pollution and offspring congenital heart disease: a case-control study in East China[J]. BMC Public Health, 2022, 22(1): 767.
doi: 10.1186/s12889-022-13174-0 pmid: 35428227 |
[11] | Cai J, Zhao Y, Liu P, et al. Exposure to particulate air pollution during early pregnancy is associated with placental DNA methylation[J]. Sci Total Environ, 2017, (607-608): 1103-1108. |
[12] |
Karoui A, Crochemore C, Harouki N, et al. Nitrogen dioxide inhalation exposures induce cardiac mitochondrial reactive oxygen species production, impair mitochondrial function and promote coronary endothelial dysfunction[J]. Int J Environ Res Public Health, 2020, 17(15): 5526.
doi: 10.3390/ijerph17155526 |
[13] |
Hettfleisch K, Bernardes LS, Carvalho MA, et al. Short-term exposure to urban air pollution and influences on placental vascularization indexes[J]. Environ Health Perspect, 2017, 125(4): 753-759.
doi: 10.1289/EHP300 |
[14] |
Rappazzo KM, Warren JL, Meyer RE, et al. Maternal residential exposure to agricultural pesticides and birth defects in a 2003 to 2005 North Carolina birth cohort[J]. Birth Defects Res A Clin Mol Teratol, 2016, 106(4): 240-249.
doi: 10.1002/bdra.23479 |
[15] |
Carmichael SL, Yang W, Roberts E, et al. Residential agricultural pesticide exposures and risk of selected congenital heart defects among offspring in the San Joaquin Valley of California[J]. Environ Res, 2014, 135: 133-138.
doi: 10.1016/j.envres.2014.08.030 pmid: 25262086 |
[16] | Abdollahi M, Ranjbar A, Shadnia S, et al. Pesticides and oxidative stress: a review[J]. Med Sci Monit, 2004, 10(6): RA141-RA147. |
[17] |
Ou Y, Bloom MS, Nie Z, et al. Associations between toxic and essential trace elements in maternal blood and fetal congenital heart defects[J]. Environ Int, 2017, 106: 127-134.
doi: S0160-4120(16)31042-X pmid: 28645012 |
[18] |
Sun J, Mao B, Wu Z, et al. Relationship between maternal exposure to heavy metal titanium and offspring congenital heart defects in Lanzhou, China: a nested case-control study[J]. Front Public Health, 2022, 10: 946439.
doi: 10.3389/fpubh.2022.946439 |
[19] |
Wang M, Tian Y, Yu P, et al. Association between congenital heart defects and maternal manganese and iron concentrations: a case-control study in China[J]. Environ Sci Pollut Res Int, 2022, 29(18): 26950-26959.
doi: 10.1007/s11356-021-17054-9 |
[20] |
Zhang N, Liu Z, Tian X, et al. Barium exposure increases the risk of congenital heart defects occurrence in offspring[J]. Clin Toxicol (Phila), 2018, 56(2): 132-139.
doi: 10.1080/15563650.2017.1343479 pmid: 28705031 |
[21] | 邱依聆, 陈乐, 江燕萍. 重金属暴露影响DNA甲基化并导致先天性心脏病发生的研究进展[J]. 实用医学杂志, 2021, 37(5): 692-695. |
[22] |
Lin S, Lin Z, Ou Y, et al. Maternal ambient heat exposure during early pregnancy in summer and spring and congenital heart defects - a large US population-based, case-control study[J]. Environ Int, 2018, 118: 211-221.
doi: S0160-4120(18)30280-0 pmid: 29886237 |
[23] |
Yu X, Miao H, Zeng Q, et al. Associations between ambient heat exposure early in pregnancy and risk of congenital heart defects: a large population-based study[J]. Environ Sci Pollut Res Int, 2022, 29(5): 7627-7638.
doi: 10.1007/s11356-021-16237-8 |
[24] |
Auger N, Fraser WD, Sauve R, et al. Risk of congenital heart defects after ambient heat exposure early in pregnancy[J]. Environ Health Perspect, 2017, 125(1): 8-14.
doi: 10.1289/EHP171 |
[25] |
Jiang W, Liu Z, Ni B, et al. Independent and interactive effects of air pollutants and ambient heat exposure on congenital heart defects[J]. Reprod Toxicol, 2021, 104: 106-113.
doi: 10.1016/j.reprotox.2021.07.007 pmid: 34311057 |
[26] |
Hutson MR, Keyte AL, Hernández-Morales M, et al. Temperature-activated ion channels in neural crest cells confer maternal fever-associated birth defects[J]. Sci Signal, 2017, 10(500): eaal4055.
doi: 10.1126/scisignal.aal4055 |
[27] | 曹晨, 沈艳, 顾宁. 电磁辐射对人体健康影响的多组学研究进展[J]. 南京医科大学学报(社会科学版), 2022, 22(4): 318-324 |
[28] |
Zhao D, Guo L, Zhang R, et al. Risk of congenital heart disease due to exposure to common electrical appliances during early pregnancy: a case-control study[J]. Environ Sci Pollut Res Int, 2021, 28(4): 4739-4748.
doi: 10.1007/s11356-020-10852-7 |
[29] |
Morton LM, Karyadi DM, Stewart C, et al. Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident[J]. Science, 2021, 372(6543): eabg2538.
doi: 10.1126/science.abg2538 |
[30] |
Hou Q, Wang M, Wu S, et al. Oxidative changes and apoptosis induced by 1800-MHz electromagnetic radiation in NIH/3T3 cells[J]. Electromagn Biol Med, 2015, 34(1): 85-92.
doi: 10.3109/15368378.2014.900507 pmid: 24665905 |
[31] |
Kim JH, Jeon S, Choi HD, et al. Exposure to longterm evolution radiofrequency electromagnetic fields decreases neuroblastoma cell proliferation via akt/mtormediated cellular senescence[J]. J Toxicol Environ Health A, 2021, 84(20): 846-857.
doi: 10.1080/15287394.2021.1944944 |
[32] |
Øyen N, Diaz LJ, Leirgul E, et al. Prepregnancy diabetes and offspring risk of congenital heart disease: a nationwide cohort study[J]. Circulation, 2016, 133(23): 2243-2253.
doi: 10.1161/CIRCULATIONAHA.115.017465 pmid: 27166384 |
[33] |
Chen ZY, Mao SF, Guo LH, et al. Effect of maternal pregestational diabetes mellitus on congenital heart diseases[J]. World J Pediatr, 2022. doi: 10.1007/s12519-022-00582-w.
doi: 10.1007/s12519-022-00582-w |
[34] |
Zhang S, Qiu X, Wang T, et al. Hypertensive disorders in pregnancy are associated with congenital heart defects in offspring: a systematic review and meta-analysis[J]. Front Cardiovasc Med, 2022, 9: 842878.
doi: 10.3389/fcvm.2022.842878 |
[35] |
Yang G, Deng X, Xiao J, et al. Maternal fever during preconception and conception is associated with congenital heart diseases in offspring: an updated meta-analysis of observational studies[J]. Medicine (Baltimore), 2021, 100(9): e24899.
doi: 10.1097/MD.0000000000024899 |
[36] |
Wang T, Li Q, Chen L, et al. Maternal Viral infection in early pregnancy and risk of congenital heart disease in offspring: a prospective cohort study in central China[J]. Clin Epidemiol, 2022, 14: 71-82.
doi: 10.2147/CLEP.S338870 pmid: 35082532 |
[37] |
Sun M, Zhang S, Li Y, et al. Effect of maternal antidepressant use during the pre-pregnancy/early pregnancy period on congenital heart disease: a prospective cohort study in central China[J]. Front Cardiovasc Med, 2022, 9: 916882.
doi: 10.3389/fcvm.2022.916882 |
[38] |
Saad H, Sinclair M, Bunting B. Maternal sociodemographic characteristics, early pregnancy behaviours, and livebirth outcomes as congenital heart defects risk factors - Northern Ireland 2010-2014[J]. BMC Pregnancy Childbirth, 2021, 21(1): 759.
doi: 10.1186/s12884-021-04223-4 |
[39] |
Crider KS, Qi YP, Yeung LF, et al. Folic acid and the prevention of birth defects: 30 years of opportunity and controversies[J]. Annu Rev Nutr. 2022, 42: 423-452.
doi: 10.1146/annurev-nutr-043020-091647 pmid: 35995050 |
[40] |
Qu Y, Lin S, Zhuang J, et al. First-trimester maternal folic acid supplementation reduced risks of severe and most congenital heart diseases in offspring: a large case-control study[J]. J Am Heart Assoc, 2020, 9(13): e015652.
doi: 10.1161/JAHA.119.015652 |
[41] |
Wang D, Jin L, Zhang J, et al. Maternal periconceptional folic acid supplementation and risk for fetal congenital heart defects[J]. J Pediatr, 2022, 240: 72-78.
doi: 10.1016/j.jpeds.2021.09.004 |
[42] |
Tang LS, Wlodarczyk BJ, Santillano DR, et al. Deve-lopmental consequences of abnormal folate transport during murine heart morphogenesis[J]. Birth Defects Res A Clin Mol Teratol, 2004, 70: 449-458.
doi: 10.1002/bdra.20043 |
[1] | CHU Sijia, TANG Jihong. Research progress of central nervous system injury associated with pediatric acute lymphoblastic leukemia and its treatment [J]. Journal of Clinical Pediatrics, 2024, 42(9): 811-816. |
[2] | WANG Huiying, TANG Jiazhong, SHANG Wenyuan, HUANG Jihong, LU Yanan, CHEN Sun. Analysis of factors influencing mechanical ventilation duration after surgery for congenital heart disease [J]. Journal of Clinical Pediatrics, 2024, 42(7): 654-658. |
[3] | WANG Libo, ZHANG Qianwen, YAO Ruen, TANG Yijun, GAO Shiyang, LI Zhiying, HU Feihan, LI Xin, LOU Dan, WANG Xiumin. Clinical characterization of five children with 17p13.3 microdeletion syndrome and evaluation of their efficacy [J]. Journal of Clinical Pediatrics, 2024, 42(11): 942-947. |
[4] | CHEN Sun. The current status and prospects of fetal cardiac intervention for congenital heart diseases [J]. Journal of Clinical Pediatrics, 2024, 42(10): 833-836. |
[5] | WANG Siyuan, CHEN Yu, SUN Menglian, HE Xiaomin, HUANG Jianhu, SHEN Nanping. Risk factors of cerebral oxygen desaturation events after cardiopulmonary bypass in children with congenital heart disease under 1 year old [J]. Journal of Clinical Pediatrics, 2024, 42(10): 843-848. |
[6] | CAI Leiyi, ZHAO Liqing, WANG Lei, JIAO Xianting, ZHANG Yongjun, WU Yurong, ZHU Hong, XIA Hongping, SUN Kun, CHEN Sun. Fetal cardiac intervention for critical congenital heart disease of fetus: a report of 5 cases [J]. Journal of Clinical Pediatrics, 2024, 42(1): 35-39. |
[7] | YU Hui. Resistance mechanism and treatment of carbapenem resistant Pseudomonas aeruginosa [J]. Journal of Clinical Pediatrics, 2023, 41(8): 561-565. |
[8] | ZHU Xiaoli, YANG Qianli, WANG Bo, TA Shengjun, ZHAO Xueli, LI Jing, CHENG Shengquan, LIU Liwen. Genotypes and clinical phenotypes of Noonan syndrome in children with hypertrophic cardiomyopathy [J]. Journal of Clinical Pediatrics, 2023, 41(2): 125-129. |
[9] | CHEN Yanhua, YIN Dan, ZHENG Ming, LYU Tiewei, YI Qijian, LI Mi, XIANG Ping. Efficacy evaluation on transcatheter closure of patent ductus arteriosus with mitral regurgitation in children [J]. Journal of Clinical Pediatrics, 2022, 40(7): 517-521. |
[10] | XIA Ying, LUO Jian. Research progress of airway mucus hypersecretion in children [J]. Journal of Clinical Pediatrics, 2022, 40(12): 950-955. |
[11] | CHEN Yu, XU Weihong, WANG Siyuan. Establishment and evaluation of hypothermia nomogram after cardiopulmonary bypass in children with congenital heart disease [J]. Journal of Clinical Pediatrics, 2021, 39(9): 682-. |
[12] | CHEN Yinghui, ZHANG Qi. The overview of the molecular mechanism regulating the closure of patent ductus arteriosus [J]. Journal of Clinical Pediatrics, 2021, 39(11): 869-. |
[13] | WANG Guixi, SUN Kun, KONG Linghui, et al. Value of SNP array analysis in diagnosis of fetal congenital heart disease [J]. Journal of Clinical Pediatrics, 2021, 39(10): 726-. |
[14] | ZHOU Yunguo, ZHANG Zheng, XU Fei, et al. Effect of ventricular septal defect occluder in the treatment of peculiar shaped patent ductus arteriosus in infants [J]. Journal of Clinical Pediatrics, 2020, 38(9): 679-. |
[15] | FU Xingpeng, YE Jingjing, YU Jin, et al. Ultrasonographic diagnosis of 42 children with congenital heart disease complicated with infectious endocarditis [J]. Journal of Clinical Pediatrics, 2020, 38(2): 129-. |
|