Journal of Clinical Pediatrics ›› 2023, Vol. 41 ›› Issue (10): 646-653.doi: 10.12372/jcp.2023.23e0634
• Expert Review • Previous Articles Next Articles
LI Fang, WANG Li
Received:
2023-07-11
Online:
2023-10-15
Published:
2023-10-08
LI Fang, WANG Li. Progress and challenges in clinical research of umbilical cord blood transplantation for the treatment of premature infant diseases[J].Journal of Clinical Pediatrics, 2023, 41(10): 646-653.
"
疾病 | 研究阶段 | 移植途径及时机 | 干细胞类型/来源 | 结论 | 参考文献 |
---|---|---|---|---|---|
BPD | I期 | 气管内、生后7~14 d | 同种异体hUCB-MSCs、单次、低剂量(1×107/kg)或高剂量(2×107/kg) | 近期(移植后84 d)、远期(校正GA 2岁)安全 | Chang等[ |
I期 | 气管内、生后5~14 d | 同种异体hUCB-MSCs、单次、低剂量(1×107/kg)或高剂量(2×107/kg) | 移植后84 d内无移植相关不良事件 | Powell等[ | |
I期 | 静脉、诊断BPD后 | 同种异体hUCB-MSCs、单次、6例低剂量组(1×106/kg)、7例高剂量组(5×106/kg) | 移植后28 d内无移植相关不良事件 | Xia等[ | |
I期 | 静脉、诊断BPD后 | 同种异体hUCB-MSCs、2剂(每剂1×106/kg) | 移植后1年无移植相关不良事件 | Nguyen等[ | |
II期 | 气管内、生后(11.8± 2.0)d | 同种异体hUCB-MSCs、单次1×107/kg | 干细胞组炎症因子水平较低、死亡/中重度BPD无显著差异;亚组分析23~24周组重度BPD较低 | Ahn等[ | |
II期 | 静脉、生后8 h内 | 自体脐带血单个核细胞、单次5×107 /kg | 干细胞组机械通气和需氧治疗时间显著减少 | Ren等[ | |
II期 | 静脉、生后24 h内 | 自体脐带血单个核细胞、单次5×107 /kg | 干细胞组存活者的中重度BPD发病率显著降低、呼吸机拔管率更高、校正18~24月龄发育迟缓更低 | Zhu xiao等[ | |
IVH | I期 | 脑室内、诊断重度IVH后7 d内 | 同种异体hUCB-MSCs、单次、低剂量(5×106/kg)或高剂量(2×107/kg) | 近期结果:安全可行;计划随访至2岁 | Ahn等[ |
HIE | I期 | 静脉、生后最初72(48)h内最多输注4次 | (1~5)×107 /kg自体脐带血 | 住院结局相似、干细胞移植组1岁Bayley III评分更好 | Cotton等[ |
I期 | 静脉、生后12~72 h内共接受3次 | 自体脐带血 | 随访至18月龄安全可行 | Tsuji等[ | |
NEC | 个案报道 | 静脉、NEC术后 | 同种异体hUCB-MSCs 1×107/kg | 1岁的体格和神经发育和同龄儿童相当 | Akduman等[ |
早产儿贫血 | I期 | 静脉 | 5例、自体脐带血移植 | 安全可行 | Rudnicki等[ |
I期 | 静脉 | 5例、自体脐带血移植 | 安全可行 | Kotowski等[ | |
左心发育不良综合征 | I期 | 心肌内注射、接受II期手术时 | 自体脐带血单个核细胞 (1~3)×106 | 随访6个月:安全可行 | Burkhar等[ |
[1] |
Sun B, Shao X, Cao Y, et al. Neonatal-perinatal medicine in a transitional period in China[J]. Arch Dis Child Fetal Neonatal Ed, 2013, 98(5): F440-F444.
doi: 10.1136/archdischild-2012-302524 |
[2] |
He C, Liu L, Chu Y, et al. National and subnational all-cause and cause-specific child mortality in China, 1996-2015: a systematic analysis with implications for the Sustainable Development Goals[J]. Lancet Glob Health, 2017, 5(2): e186-e197.
doi: 10.1016/S2214-109X(16)30334-5 pmid: 28007477 |
[3] |
Schmidt B, Asztalos EV, Roberts RS, et al. Impact of bronchopulmonary dysplasia, brain injury, and severe retinopathy on the outcome of extremely low-birth-weight infants at 18 months: results from the trial of indomethacin prophylaxis in preterms[J]. JAMA-J Am Med Assoc, 2003, 289(9): 1124-1129.
doi: 10.1001/jama.289.9.1124 pmid: 12622582 |
[4] |
Baker EK, Jacobs SE, Lim R, et al. Cell therapy for the preterm infant: promise and practicalities[J]. Arch Dis Child Fetal Neonatal Ed, 2020, 105(5): 563-568.
doi: 10.1136/archdischild-2019-317896 |
[5] |
Sanchez-Petitto G, Rezvani K, Daher M, et al. Umbilical cord blood transplantation: connecting its origin to its future[J]. Stem Cells Transl Med, 2023, 12(2): 55-71.
doi: 10.1093/stcltm/szac086 |
[6] |
Broxmeyer HE, Lee M, Hangoc G, et al. Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21- to 23.5-year cryopreserved cord blood[J]. Blood, 2011, 117(18): 4773-4777.
doi: 10.1182/blood-2011-01-330514 pmid: 21393480 |
[7] |
Mcdonald CA, Fahey MC, Jenkin G, et al. Umbilical cord blood cells for treatment of cerebral palsy; timing and treatment options[J]. Pediatr Res, 2018, 83(1-2): 333-344.
doi: 10.1038/pr.2017.236 pmid: 28937975 |
[8] | Castillo-Melendez M, Yawno T, Jenkin G, et al. Stem cell therapy to protect and repair the developing brain: a review of mechanisms of action of cord blood and amnion epithelial derived cells[J]. Front Neurosci, 2013, 7: 194. |
[9] |
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
doi: 10.1080/14653240600855905 pmid: 16923606 |
[10] |
Bernardo ME, Pagliara D, Locatelli F. Mesenchymal stromal cell therapy: a revolution in regenerative medicine?[J]. Bone Marrow Transplant, 2012, 47(2): 164-171.
doi: 10.1038/bmt.2011.81 |
[11] |
Zhang X, Hirai M, Cantero S, et al. Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue[J]. J Cell Biochem, 2011, 112(4):1206-1218.
doi: 10.1002/jcb.23042 pmid: 21312238 |
[12] |
Brown JA, Boussiotis VA. Umbilical cord blood transplantation: Basic biology and clinical challenges to immune reconstitution[J]. Clin Immunol, 2008, 127(3): 286-297.
doi: 10.1016/j.clim.2008.02.008 pmid: 18395491 |
[13] |
Carrelha J, Meng Y, Kettyle LM, et al. Hierarchically related lineage-restricted fates of multipotent haema-topoietic stem cells[J]. Nature, 2018, 554(7690): 106-111.
doi: 10.1038/nature25455 |
[14] |
Li J, Ma Y, Miao X, et al. Neovascularization and tissue regeneration by endothelial progenitor cells in ischemic stroke[J]. Neurol Sci, 2021, 42(9): 3585-3593.
doi: 10.1007/s10072-021-05428-3 pmid: 34216308 |
[15] |
Chirumbolo S, Ortolani R, Veneri D, et al. Lymphocyte phenotypic subsets in umbilical cord blood compared to peripheral blood from related mothers[J]. Cytometry B Clin Cytom, 2011, 80B(4): 248-253.
doi: 10.1002/cyto.b.v80b.4 |
[16] | Saha A, Buntz S, Scotland P, et al. A cord blood monocyte-derived cell therapy product accelerates brain remyelination[J]. JCI Insight, 2016, 1(13): e86667. |
[17] |
Jakubzick CV, Randolph GJ, Henson PM. Monocyte differentiation and antigen-presenting functions[J]. Nat Rev Immunol, 2017, 17(6): 349-362.
doi: 10.1038/nri.2017.28 pmid: 28436425 |
[18] |
Sullivan MJ. Banking on cord blood stem cells[J]. Nat Rev Cancer, 2008, 8(7): 555-563.
doi: 10.1038/nrc2418 pmid: 18548085 |
[19] |
Batsali AK, Kastrinaki M, Papadaki HA, et al. Mesenchymal stem cells derived from Wharton's Jelly of the umbilical cord: biological properties and emerging clinical applications[J]. Curr Stem Cell Res Ther, 2013, 8(2): 144-145.
doi: 10.2174/1574888X11308020005 |
[20] | Malhotra A, Thebaud B, Paton MCB, et al. Advances in neonatal cell therapies: Proceedings of the First Neonatal Cell Therapies Symposium (2022)[J]. Pediatr Res, 2023. doi: 10.1038/s41390-023-02707-x. |
[21] |
Willis GR, Reis M, Gheinani AH, et al. Extracellular vesicles protect the neonatal lung from hyperoxic injury through the epigenetic and transcriptomic reprogramming of myeloid cells[J]. Am J Respir Crit Care Med, 2021, 204(12): 1418-1432.
doi: 10.1164/rccm.202102-0329OC |
[22] | van Haaften T, Byrne R, Bonnet S, et al. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats[J]. A Am J Respir Crit Care Med, 2009, 180(11): 1131-1142. |
[23] |
Rubinstein P, Dobrila L, Rosenfield RE, et al. Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution[J]. Proc Natl Acad Sci U S A, 1995, 92: 10119-10122.
doi: 10.1073/pnas.92.22.10119 |
[24] |
Walter J, Ware LB, Matthay MA. Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis[J]. Lancet Respir Med, 2014, 2(12): 1016-1026.
doi: 10.1016/S2213-2600(14)70217-6 pmid: 25465643 |
[25] |
Gluckman E, Broxmeyer HA, Auerbach AD, et al. Hema-topoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling[J]. N Engl J Med, 1989, 321(17): 1174-1178.
doi: 10.1056/NEJM198910263211707 |
[26] |
Kotowski M, Safranow K, Kawa MP, et al. Circulating hematopoietic stem cell count is a valuable predictor of prematurity complications in preterm newborns[J]. BMC Pediatrics, 2012, 12: 148.
doi: 10.1186/1471-2431-12-148 pmid: 22985188 |
[27] | Borghesi A, Massa M, Campanelli R, et al. Circulating endothelial progenitor cells in preterm infants with bronchopulmonary dysplasia[J]. A Am J Respir Crit Care Med, 2009, 180(6): 540-546. |
[28] |
Rudnicki J, Kawa MP, Kotowski M. Clinical evaluation of the safety and feasibility of whole autologous cord blood transplant as a source of stem and progenitor cells for extremely premature neonates: preliminary report[J]. Exp Clin Transplant, 2015, 13(6): 563-572.
pmid: 26643677 |
[29] |
Chang YS, Ahn SY, Yoo HS, et al. Mesenchymal stem cells for bronchopulmonary dysplasia: phase 1 dose-escalation clinical trial[J]. J Pediatr, 2014, 164(5): 966-972.
doi: 10.1016/j.jpeds.2013.12.011 |
[30] |
Powell SB, Silvestri JM. Safety of intratracheal administration of human umbilical cord blood derived mesenchymal stromal cells in extremely low birth weight preterm infants[J]. J Pediatr, 2019, 210: 209-213.
doi: 10.1016/j.jpeds.2019.02.029 |
[31] |
Xia Y, Lang T, Niu Y, et al. Phase I trial of human umbilical cord-derived mesenchymal stem cells for treatment of severe bronchopulmonary dysplasia[J]. Genes Dis, 2023, 10(2): 521-530.
doi: 10.1016/j.gendis.2022.02.001 pmid: 37223507 |
[32] |
Nguyen LT, Trieu TTH, Bui HTH, et al. Allogeneic administration of human umbilical cord-derived mesen-chymal stem/stromal cells for bronchopulmonary dysplasia: preliminary outcomes in four Vietnamese infants[J]. J Transl Med, 2020, 18(1): 398.
doi: 10.1186/s12967-020-02568-6 pmid: 33081796 |
[33] |
Ahn SY, Chang YS, Lee MH, et al. Stem cells for bronchopulmonary dysplasia in preterm infants: a randomized controlled phase II trial[J]. Stem Cells Transl Med, 2021, 10(8): 1129-1137.
doi: 10.1002/sctm.20-0330 |
[34] |
Ren Z, Xu F, Zhang X, et al. Autologous cord blood cell infusion in preterm neonates safely reduces respiratory support duration and potentially preterm complications[J]. Stem Cells Transl Med, 2020, 9(2): 169-176.
doi: 10.1002/sctm.19-0106 |
[35] |
Zhuxiao R, Fang X, Wei W, et al. Prevention for moderate or severe BPD with intravenous infusion of autologous cord blood mononuclear cells in very preterm infants-a prospective non-randomized placebo-controlled trial and two-year follow up outcomes[J]. EClinicalMedicine, 2023, 57: 101844.
doi: 10.1016/j.eclinm.2023.101844 |
[36] |
Inder TE, Warfield SK, Wang H, et al. Abnormal cerebral structure is present at term in premature infants[J]. Pediatrics, 2005, 115(2): 286-294.
doi: 10.1542/peds.2004-0326 pmid: 15687434 |
[37] |
Sabir H, Bonifacio SL, Gunn AJ, et al. Unanswered questions regarding therapeutic hypothermia for neonates with neonatal encephalopathy[J]. Semin Fetal Neonatal Med, 2021, 26(5): 101257.
doi: 10.1016/j.siny.2021.101257 |
[38] |
Ahn SY, Chang YS, Sung SI, et al. Mesenchymal stem cells for severe intraventricular hemorrhage in preterm infants: phase I dose-escalation clinical trial[J]. Stem Cells Transl Med, 2018, 7(12): 847-856.
doi: 10.1002/sctm.17-0219 |
[39] |
Cotten CM, Murtha AP, Goldberg RN, et al. Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy[J]. J Pediatr, 2014, 164(5): 973-979.
doi: 10.1016/j.jpeds.2013.11.036 |
[40] |
Tsuji M, Sawada M, Watabe S, et al. Autologous cord blood cell therapy for neonatal hypoxic-ischaemic encephalopathy: a pilot study for feasibility and safety[J]. Sci Rep, 2020, 10(1): 4603.
doi: 10.1038/s41598-020-61311-9 pmid: 32165664 |
[41] | Malhotra A, Novak I, Miller SL, et al. Autologous transplantation of umbilical cord blood-derived cells in extreme preterm infants: protocol for a safety and feasibility study[J]. BMJ Open, 2020, 10(5): e36065. |
[42] |
Akduman H, Dilli D, Ergün E, et al. Successful mesenchymal stem cell application in supraventricular tachycardia-related necrotizing enterocolitis: a case report[J]. Fetal Pediatr Pathol, 2021, 40(3): 250-255.
doi: 10.1080/15513815.2019.1693672 |
[43] |
Kotowski M, Litwinska Z, Klos P. Autologous cord utologous cord blood transfusion in preterm infants-could its humoral effect be the key to control prematurity-related complications? a preliminary study[J]. J Physiol Pharmacol, 2017, 68(6): 921-927.
pmid: 29550804 |
[44] |
Burkhart HM, Qureshi MY, Rossano JW, et al. Autologous stem cell therapy for hypoplastic left heart syndrome: Safety and feasibility of intraoperative intramyocardial injections[J]. J Thorac Cardiovasc Surg, 2019, 158(6): 1614-1623.
doi: S0022-5223(19)31154-7 pmid: 31345560 |
[45] |
Ciubotariu R, Scaradavou A, Ciubotariu I, et al. Impact of delayed umbilical cord clamping on public cord blood donations: can we help future patients and benefit infant donors?[J]. Transfusion, 2018, 58(6): 1427-1433.
doi: 10.1111/trf.14574 pmid: 29574750 |
[46] | Segler A, Braun T, Fischer HS, et al. Feasibility of umbilical cord blood collection in neonates at risk of brain damage—a step toward autologous cell therapy for a high-risk population[J]. Cell Transplant, 2021, 30: 1503988442. |
[47] |
Zarrabi M, Akbari MG, Amanat M, et al. The safety and efficacy of umbilical cord blood mononuclear cells in individuals with spastic cerebral palsy: a randomized double-blind sham-controlled clinical trial[J]. BMC Neurology, 2022, 22(1): 123.
doi: 10.1186/s12883-022-02636-y pmid: 35351020 |
[48] |
Cohen S, Roy J, Lachance S, et al. Hematopoietic stem cell transplantation using single UM171-expanded cord blood: a single-arm, phase 1-2 safety and feasibility study[J]. Lancet Haematol, 2020, 7(2): e134-e145.
doi: 10.1016/S2352-3026(19)30202-9 pmid: 31704264 |
[49] |
Qin M, Guan X, Wang H, et al. An effective ex-vivo approach for inducing endothelial progenitor cells from umbilical cord blood CD34+ cells[J]. Stem Cell Res Ther, 2017, 8(1): 25.
doi: 10.1186/s13287-017-0482-9 |
[50] |
Ortiz LA, Gambelli F, Mcbride C, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects[J]. Proc Natl Acad Sci U S A, 2003, 100(14): 8407-8411.
doi: 10.1073/pnas.1432929100 |
[51] |
Li J, Yawno T, Sutherland A, et al. Preterm white matter brain injury is prevented by early administration of umbilical cord blood cells[J]. Exp Neurol, 2016, 283: 179-187.
doi: 10.1016/j.expneurol.2016.06.017 pmid: 27317990 |
[52] |
Sun JM, Song AW, Case LE, et al. Effect of autologous cord blood infusion on motor function and brain connectivity in young children with cerebral palsy: a randomized, placebo-controlled trial[J]. Stem Cells Transl Med, 2017, 6(12): 2071-2078.
doi: 10.1002/sctm.17-0102 |
[53] | Ahn SY, Chang YS, Sung DK, et al. Optimal route for mesenchymal stem cells transplantation after severe intraventricular hemorrhage in newborn rats[J]. PLoS One, 2015, 10(7): e132919. |
[54] |
Luan Y, Zhang L, Chao S, et al. Mesenchymal stem cells in combination with erythropoietin repair hyperoxia-induced alveoli dysplasia injury in neonatal mice via inhibition of TGF-β1 signaling[J]. Oncotarget, 2016, 7(30): 47082-47094.
doi: 10.18632/oncotarget.9314 pmid: 27191651 |
[55] | Park WS, Sung SI, Ahn SY, et al. Hypothermia augments neuroprotective activity of mesenchymal stem cells for neonatal hypoxic-ischemic encephalopathy[J]. PLoS One, 2015, 10(3): e120893. |
[56] |
Herz J, Köster C, Reinboth BS, et al. Interaction between hypothermia and delayed mesenchymal stem cell therapy in neonatal hypoxic-ischemic brain injury[J]. Brain Behav Immun, 2018, 70: 118-130.
doi: S0889-1591(18)30018-7 pmid: 29454023 |
[57] |
Røsland GV, Svendsen A, Torsvik A, et al. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation[J]. Cancer Res, 2009, 69(13): 5331-5339.
doi: 10.1158/0008-5472.CAN-08-4630 pmid: 19509230 |
[58] |
He J, Yao X, Mo P, et al. Lack of tumorigenesis and protumorigenic activity of human umbilical cord mesenchymal stem cells in NOD SCID mice[J]. BMC Cancer, 2022, 22(1): 307.
doi: 10.1186/s12885-022-09431-5 pmid: 35317758 |
[1] | LIN Yucong, GAO Liang, ZHENG Zhi. Influencing factors analysis of the occurrence of small for gestational age in late preterm infants [J]. Journal of Clinical Pediatrics, 2023, 41(7): 514-518. |
[2] | XI Bixin, HU Qun, LIU Aiguo. Advances in the gene therapy for Fanconi anemia [J]. Journal of Clinical Pediatrics, 2023, 41(2): 156-160. |
[3] | ZHU Xingwang, SHI Yuan. Clinical application of non-invasive high-frequency oscillatory ventilation in premature infants [J]. Journal of Clinical Pediatrics, 2023, 41(10): 641-645. |
[4] | ZHOU Jianguo. Etiologies of death and preventive strategies in extremely preterm infants [J]. Journal of Clinical Pediatrics, 2023, 41(10): 654-657. |
[5] | ZHANG Ye, QI Min, SHI Chunyan, YANG Shibing, JIANG Zhou. Analysis of clinical features and risk factors of death in extremely preterm infants [J]. Journal of Clinical Pediatrics, 2023, 41(10): 665-669. |
[6] | WEI Lele, SONG Juan, DONG Huimin, JUE Zhenzhen, LI Wendong, XU Falin, WANG Jun. Risk factors of transfusion-associated necrotizing enterocolitis in very preterm infants [J]. Journal of Clinical Pediatrics, 2022, 40(9): 666-671. |
[7] | DING Yingxue. Phenotypic evolution of bronchopulmonary dysplasia in premature infants [J]. Journal of Clinical Pediatrics, 2022, 40(6): 407-412. |
[8] | LIU Wenqiang, WANG Jun, YE Lili, YANG Qianqian, XU Yan. Application of volume guaranteed ventilation in preterm infants with respiratory distress syndrome [J]. Journal of Clinical Pediatrics, 2022, 40(6): 425-430. |
[9] | ZHU Qiujiao, PAN Tao, BAI Zhenjiang, DING Xin, LI Ying. Clinical analysis of severe cytokine release syndrome caused by CAR-T cell therapy in children's intensive care unit [J]. Journal of Clinical Pediatrics, 2022, 40(11): 848-853. |
[10] | YANG Huijie, WANG Zhengli, DENG Chun. Clinical study of spontaneous intestinal perforation in premature infants [J]. Journal of Clinical Pediatrics, 2021, 39(9): 650-. |
[11] | WANG Hui, CAO Lifang, ZHANG Xuefeng. Effect of antenatal corticosteroids on respiratory diseases in late-preterm infant [J]. Journal of Clinical Pediatrics, 2021, 39(6): 410-. |
[12] | MENG Hanyan. Research progress of extrauterine growth restriction in premature infants [J]. Journal of Clinical Pediatrics, 2021, 39(4): 304-. |
[13] | LI Tong, LI Dong. Clinical risk factors and short-term outcome of parenteral nutrition associated-cholestasis in preterm low birth weight infants [J]. Journal of Clinical Pediatrics, 2020, 38(7): 518-. |
[14] | REN Jiandong, LI Jun, YAN Jie, et al. Study on gastrointestinal microbiota of late preterm infants with feeding intolerance [J]. Journal of Clinical Pediatrics, 2020, 38(4): 255-. |
[15] | HUANG Chunling, CHANG Yanmei, LIU Yunfeng, et al. Clinical analysis of 19 preterm and term infants with cerebral infarction [J]. Journal of Clinical Pediatrics, 2019, 37(11): 833-. |
|