临床儿科杂志 ›› 2022, Vol. 40 ›› Issue (8): 566-572.doi: 10.12372/jcp.2022.22e0131
钟文伟, 李京阳, 耿丽婷, 张建华
收稿日期:
2022-01-20
出版日期:
2022-08-15
发布日期:
2022-08-09
作者简介:
钟文伟 博士,青年编委,ORCID:0000-0003-1629-224X,钟文伟(1974—),博士,上海交通大学医学院附属新华医院儿内呼吸科副主任医师。长期从事儿童呼吸系统疾病的临床和科研工作,擅长儿童哮喘、慢性咳嗽、呼吸系统感染性疾病的诊治。研究方向为哮喘发病免疫学机制。兼任中国医师协会儿科分会呼吸学组青年委员会副组长,中华医学会儿科分会呼吸学组青年委员会副组长,中国医师协会变态反应分会青年委员,中华医学会变态反应分会青年委员,上海医学会儿科分会呼吸学组委员, 中华医学会儿科分会呼吸学组慢性咳嗽协作组成员。 主持国家自然科学基金2项,上海市科委课题2项、上海市卫健委课题1项,发表SCI论文10余篇。
基金资助:
ZHONG Wenwei, LI Jingyang, GENG Liting, ZHANG Jianhua
Received:
2022-01-20
Online:
2022-08-15
Published:
2022-08-09
摘要:
Th2免疫应答是过敏性疾病发病最重要的免疫学机制。嗜碱性粒细胞(Ba)在过敏性炎症中起着始动者、效应者和调节者作用。在过敏性炎症的始动阶段,Ba可能通过独立或与树突状细胞(DCs)间通过协同作用完成抗原递呈作用而启动Th2免疫应答。Ba还表现出增强记忆性Th2、Th17免疫应答的免疫学效应,提示其在记忆性免疫应答中起着重要作用。临床研究发现嗜碱性粒细胞活化试验(basophil activation test,BAT)在过敏性疾病诊断中具有独特优势,且在监测评估特异性免疫治疗和生物制剂治疗疗效中具有作为生物学标记的潜在价值。
钟文伟, 李京阳, 耿丽婷, 张建华. 嗜碱性粒细胞在过敏性疾病中研究进展及临床应用展望[J]. 临床儿科杂志, 2022, 40(8): 566-572.
ZHONG Wenwei, LI Jingyang, GENG Liting, ZHANG Jianhua. Research progress and prospect of clinical application of basophils in allergic diseases[J]. Journal of Clinical Pediatrics, 2022, 40(8): 566-572.
[1] |
Miyake K, Shibata S, Yoshikawa S, et al. Basophils and their effector molecules in allergic disorders[J]. Allergy, 2021, 76(6): 1693-1706.
doi: 10.1111/all.14662 |
[2] |
Karasuyama H, Shibata S, Yoshikawa S, et al. Basophils, a neglected minority in the immune system, have come into the limelight at last[J]. Int Immunol, 2021, 33(12): 809-813.
doi: 10.1093/intimm/dxab021 pmid: 34038539 |
[3] |
Karasuyama H, Miyake K, Yoshikawa S, et al. How do basophils contribute to Th2 cell differentiation and allergic responses?[J]. Int Immunol, 2018, 30(9): 391-396.
doi: 10.1093/intimm/dxy026 pmid: 30169733 |
[4] |
Sokol CL, Chu NQ, Yu S, et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response[J]. Nat Immunol, 2009, 10(7): 713-720.
doi: 10.1038/ni.1738 |
[5] |
Perrigoue JG, Saenz SA, Siracusa MC, et al. MHC class II-dependent basophil-CD4+ T cell interactions promote T(H)2 cytokine-dependent immunity[J]. Nat Immunol, 2009, 10(7): 697-705.
doi: 10.1038/ni.1740 |
[6] |
Sokol CL, Barton GM, Farr AG, et al. A mechanism for the initiation of allergen-induced T helper type 2 responses[J]. Nat Immunol, 2008, 9(3): 310-318.
doi: 10.1038/ni1558 |
[7] |
Sullivan BM, Liang HE, Bando JK, et al. Genetic analysis of basophil function in vivo[J]. Nat Immunol, 2011, 12(6): 527-535.
doi: 10.1038/ni.2036 |
[8] |
Miyake K, Karasuyama H. Emerging roles of basophils in allergic inflammation[J]. Allergol Int, 2017, 66(3): 382-391.
doi: 10.1016/j.alit.2017.04.007 |
[9] |
Sarfati M, Wakahara K, Chapuy L, et al. Mutual interaction of basophils and t cells in chronic inflammatory diseases[J]. Front Immunol, 2015, 6: 399.
doi: 10.3389/fimmu.2015.00399 pmid: 26284078 |
[10] |
Di C, Lin X, Zhang Y, et al. Basophil-associated OX40 ligand participates in the initiation of Th2 responses during airway inflammation[J]. J Biol Chem, 2015, 290(20): 12523-12536.
doi: 10.1074/jbc.M115.642637 |
[11] |
Zhong W, Su W, Zhang Y, et al. Basophils as a primary inducer of the T helper type 2 immunity in ovalbumin-induced allergic airway inflammation[J]. Immunology, 2014, 142(2): 202-215.
doi: 10.1111/imm.12240 |
[12] |
Zhong W, Di C, Lv J, et al. Heme oxygenase-1 inhibits basophil maturation and activation but promotes its apoptosis in T helper type 2-mediated allergic airway inflammation[J]. Immunology, 2016, 147(3): 321-337.
doi: 10.1111/imm.12564 |
[13] |
Yoshimoto T, Yasuda K, Tanaka H, et al. Basophils contribute to T(H)2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells[J]. Nat Immunol, 2009, 10(7): 706-712.
doi: 10.1038/ni.1737 pmid: 19465908 |
[14] |
Schuijs MJ, Hammad H, Lambrecht BN. Professional and ‘Amateur' antigen-presenting cells in type 2 immunity[J]. Trends Immunol, 2019, 40(1): 22-34.
doi: 10.1016/j.it.2018.11.001 |
[15] |
Yamanishi Y, Miyake K, Iki M, et al. Recent advances in understanding basophil-mediated Th2 immune responses[J]. Immunol Rev, 2017, 278(1): 237-245.
doi: 10.1111/imr.12548 |
[16] |
Miyake K, Shiozawa N, Nagao T, et al. Trogocytosis of peptide-MHC class II complexes from dendritic cells confers antigen-presenting ability on basophils[J]. Proc Natl Acad Sci U S A, 2017, 114(5): 1111-1116.
doi: 10.1073/pnas.1615973114 |
[17] |
Chirumbolo S, Bjorklund G, Sboarina A, et al. The role of basophils as innate immune regulatory cells in allergy and immunotherapy[J]. Hum Vaccin Immunother, 2018, 14(4): 815-831.
doi: 10.1080/21645515.2017.1417711 |
[18] |
Sharma M, Stephen-Victor E, Poncet P, et al. Basophils are inept at promoting human Th17 responses[J]. Hum Immunol, 2015, 76(2-3): 176-180.
doi: 10.1016/j.humimm.2014.12.015 pmid: 25526920 |
[19] |
Wakahara K, Van VQ, Baba N, et al. Basophils are recruited to inflamed lungs and exacerbate memory Th2 responses in mice and humans[J]. Allergy, 2013, 68(2): 180-189.
doi: 10.1111/all.12072 pmid: 23205591 |
[20] |
Wakahara K, Van VQ, Baba N, et al. Basophils are recruited to inflamed lungs and exacerbate memory Th2 responses in mice and humans[J]. Allergy, 2013, 68(2): 180-189.
doi: 10.1111/all.12072 pmid: 23205591 |
[21] | Endo Y. Hirahara K, Yagi R, et al. Pathogenic menory type Th2 cells in allergic inflammation[J]. Trends lmmunol, 2014, 35(1): 59-78. |
[22] |
Wakahara K, Baba N, Van VQ, et al. Human basophils interact with memory T cells to augment Th17 responses[J]. Blood, 2012, 120(24): 4761-4771.
doi: 10.1182/blood-2012-04-424226 pmid: 23071273 |
[23] |
Chapuy L, Bsat M, Mehta H, et al. Basophils increase in Crohn disease and ulcerative colitis and favor mesenteric lymph node memory TH17/TH1 response[J]. J Allergy Clin Immunol, 2014, 134(4): 978-981.
doi: 10.1016/j.jaci.2014.05.025 |
[24] |
Silverpil E, Linden A. IL-17 in human asthma[J]. Expert Rev Respir Med, 2012, 6(2): 173-186.
doi: 10.1586/ers.12.12 |
[25] |
Maddur MS, Miossec P, Kaveri SV, et al. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies[J]. Am J Pathol, 2012, 181(1): 8-18.
doi: 10.1016/j.ajpath.2012.03.044 pmid: 22640807 |
[26] |
Rodriguez Gomez M, Talke Y, Goebel N, et al. Basophils support the survival of plasma cells in mice[J]. J Immunol, 2010, 185(12): 7180-7185.
doi: 10.4049/jimmunol.1002319 pmid: 21068399 |
[27] |
Denzel A, Maus UA, Rodriguez Gomez M, et al. Basophils enhance immunological memory responses[J]. Nat Immunol, 2008, 9(7): 733-742.
doi: 10.1038/ni.1621 |
[28] |
Kawakami T. Basophils now enhance memory[J]. Nat Immunol, 2008, 9(7): 720-721.
doi: 10.1038/ni0708-720 |
[29] |
Passante E. Mast cell and basophil cell lines: a compendium[J]. Methods Mol Biol, 2020, 2163: 127-144.
doi: 10.1007/978-1-0716-0696-4_10 pmid: 32766971 |
[30] |
Santos AF, Alpan O, Hoffmann HJ. Basophil activation test: mechanisms and considerations for use in clinical trials and clinical practice[J]. Allergy, 2021, 76(8): 2420-2432.
doi: 10.1111/all.14747 |
[31] |
Ebo DG, Bridts CH, Mertens CH, et al. Principles, potential, and limitations of ex vivo basophil activation by flow cytometry in allergology: a narrative review[J]. J Allergy Clin Immunol, 2021, 147(4): 1143-1153.
doi: 10.1016/j.jaci.2020.10.027 |
[30] |
Eberlein B. Basophil activation as marker of clinically relevant allergy and therapy outcome[J]. Front Immunol, 2020, 11: 1815.
doi: 10.3389/fimmu.2020.01815 |
[31] | Seth D, Poowutikul P, Pansare M, et al. Food allergy: a review[J]. Pediatr Ann, 2020, 49(1): e50-e58. |
[32] |
Gomes-Belo J, Hannachi F, Swan K, et al. Advances in food allergy diagnosis[J]. Curr Pediatr Rev, 2018, 14(3): 139-149.
doi: 10.2174/1573396314666180423105842 |
[33] |
Oriel RC, Wang J. Diagnosis and management of food allergy[J]. Immunol Allergy Clin North Am, 2021, 41(4): 571-585.
doi: 10.1016/j.iac.2021.07.012 |
[34] |
Hoffmann HJ, Santos AF, Mayorga C, et al. The clinical utility of basophil activation testing in diagnosis and monitoring of allergic disease[J]. Allergy, 2015, 70(11): 1393-1405.
doi: 10.1111/all.12698 pmid: 26198455 |
[35] |
Rubio A, Vivinus-Nebot M, Bourrier T, et al. Benefit of the basophil activation test in deciding when to reintroduce cow's milk in allergic children[J]. Allergy, 2011, 66(1): 92-100.
doi: 10.1111/j.1398-9995.2010.02432.x pmid: 20608919 |
[36] |
Santos AF, Douiri A, Becares N, et al. Basophil activation test discriminates between allergy and tolerance in peanut-sensitized children[J]. J Allergy Clin Immunol, 2014, 134(3): 645-652.
doi: 10.1016/j.jaci.2014.04.039 |
[37] |
Wanich N, Nowak-Wegrzyn A, Sampson HA, et al. Allergen-specific basophil suppression associated with clinical tolerance in patients with milk allergy[J]. J Allergy Clin Immunol, 2009, 123(4): 789-794.
doi: 10.1016/j.jaci.2008.12.1128 pmid: 19348919 |
[38] |
Sato S, Tachimoto H, Shukuya A, et al. Basophil activation marker CD203c is useful in the diagnosis of hen's egg and cow's milk allergies in children[J]. Int Arch Allergy Immunol, 2010, 152(Suppl 1): 54-61.
doi: 10.1159/000312126 |
[39] |
Ford LS, Bloom KA, Nowak-Wegrzyn AH, et al. Basophil reactivity, wheal size, and immunoglobulin levels distinguish degrees of cow's milk tolerance[J]. J Allergy Clin Immunol, 2013, 131(1): 180-186.
doi: 10.1016/j.jaci.2012.06.003 |
[40] |
Demoly P, Adkinson NF, Brockow K, et al. International consensus on drug allergy[J]. Allergy, 2014, 69(4): 420-437.
pmid: 24697291 |
[41] |
Brockow K, Garvey LH, Aberer W, et al. Skin test concen-trations for systemically administered drugs -- an ENDA/EAACI Drug Allergy Interest Group position paper[J]. Allergy, 2013, 68(6): 702-712.
doi: 10.1111/all.12142 pmid: 23617635 |
[42] |
Elst J, Sabato V, van der Poorten MM, et al. Basophil and mast cell activation tests by flow cytometry in immediate drug hypersensitivity: diagnosis and beyond[J]. J Immunol Methods, 2021, 495: 113050.
doi: 10.1016/j.jim.2021.113050 |
[43] |
Van Gasse AL, Elst J, Bridts CH, et al. Rocuronium hypersensitivity: does off-target occupation of the MRGPRX2 receptor play a role?[J]. J Allergy Clin Immunol Pract, 2019, 7(3): 998-1003.
doi: 10.1016/j.jaip.2018.09.034 |
[44] |
Sabato V, Ebo DG. Hypersensitivity to neuromuscular blocking agents: can skin tests give the green light for reexposure?[J]. J Allergy Clin Immunol Pract, 2018, 6(5): 1690-1691.
doi: S2213-2198(18)30100-4 pmid: 30197072 |
[45] |
Laguna JJ, Bogas G, Salas M, et al. The basophil activation test can be of value for diagnosing immediate allergic reactions to omeprazole[J]. J Allergy Clin Immunol Pract, 2018, 6(5): 1628-1636.
doi: S2213-2198(17)30960-1 pmid: 29339127 |
[46] |
Yasui K, Takihara Y, Matsuyama N, et al. Sensitivity and specificity of passive immune-basophil activation test to detect allergic transfusion reactions[J]. Transfusion, 2019, 59(11): 3308-3313.
doi: 10.1111/trf.15542 |
[47] |
Hirayama F, Yasui K, Matsuyama N, et al. Possible utility of the basophil activation test for the analysis of mechanisms involved in allergic transfusion reactions[J]. Transfus Med Rev, 2018, 32(1): 43-51.
doi: S0887-7963(17)30107-4 pmid: 29017820 |
[48] |
HOZA M, Merk HF, Kotliar K, et al. The CD63 basophil activation test as a diagnostic tool for assessing autoimmunity in patients with chronic spontaneous urticaria[J]. Eur J Dermatol, 2019, 29(6): 614-618.
doi: 10.1684/ejd.2019.3680 |
[49] |
D'Auria E, De Amici M, Licari A, et al. Basophil activation test in children with autoimmune chronic spontaneous urticaria: Is it ready for clinical practice?[J]. Immunobiology, 2019, 224(1): 30-33.
doi: S0171-2985(18)30181-5 pmid: 30466958 |
[50] |
Terada T, Kawata R. Diagnosis and treatment of local allergic rhinitis[J]. Pathogens, 2022, 11(1): 80.
doi: 10.3390/pathogens11010080 |
[51] | Nemsovska J, Waczulikova I, Svecova D. Basophil activation test in the diagnostics of hymenoptera venom allergy[J]. Bratisl Lek Listy, 2021, 122(11): 778-784. |
[52] |
Peternelj A, Silar M, Erzen R, et al. Basophil sensitivity in patients not responding to venom immunotherapy[J]. Int Arch Allergy Immunol, 2008, 146(3): 248-254.
doi: 10.1159/000116361 |
[53] |
Nilsson C, Nordvall L, Johansson SG, et al. Successful management of severe cow's milk allergy with omalizumab treatment and CD-sens monitoring[J]. Asia Pac Allergy, 2014, 4(4): 257-260.
doi: 10.5415/apallergy.2014.4.4.257 |
[54] |
Mikhail I, Grayson MH. Asthma and viral infections: an intricate relationship[J]. Ann Allergy Asthma Immunol, 2019, 123(4): 352-358.
doi: 10.1016/j.anai.2019.06.020 |
[55] |
Kwong CG, Bacharier LB. Phenotypes of wheezing and asthma in preschool children[J]. Curr Opin Allergy Clin Immunol, 2019, 19(2): 148-153.
doi: 10.1097/ACI.0000000000000516 |
[56] |
Boulet LP, Reddel HK, Bateman E, et al. The Global Initiative for Asthma (GINA): 25 years later[J]. Eur Respir J, 2019, 54(2): 1900598.
doi: 10.1183/13993003.00598-2019 |
[57] | Serebrisky D, Wiznia A. Pediatric asthma: a global epidemic[J]. Ann Glob Health, 2019, 85(1): 6. |
[58] |
Zhou X, Hong J. Pediatric asthma management in China: current and future challenges[J]. Paediatr Drugs, 2018, 20(2): 105-110.
doi: 10.1007/s40272-017-0276-7 |
[59] |
Carroll CL, Sekaran AK, Lerer TJ, et al. A modified pulmonary index score with predictive value for pediatric asthma exacerbations[J]. Ann Allergy Asthma Immunol, 2005, 94(3): 355-359.
doi: 10.1016/S1081-1206(10)60987-8 |
[60] |
Castro-Rodriguez JA. The asthma predictive index: early diagnosis of asthma[J]. Curr Opin Allergy Clin Immunol, 2011, 11(3): 157-161.
doi: 10.1097/ACI.0b013e3283464c4a |
[61] |
Wi CI, Krusemark EA, Voge G, et al. Usefulness of asthma predictive index in ascertaining asthma status of children using medical records: an explorative study[J]. Allergy, 2018, 73(6): 1276-1283.
doi: 10.1111/all.13403 pmid: 29319899 |
[62] |
Li J, Wu J, Liu H, et al. Utility of basophil activation test for predicting the outcome of wheezing in children: a pilot study[J]. BMC Immunol, 2021, 22(1): 4.
doi: 10.1186/s12865-020-00395-4 |
[1] | 吴巾红. 呼出气一氧化氮在儿童呼吸系统过敏性疾病诊断和治疗中的应用[J]. 临床儿科杂志, 2023, 41(5): 328-332. |
[2] | 严永东, 王婷, 滑洁. 益生菌预防和治疗儿童过敏性疾病的现状[J]. 临床儿科杂志, 2022, 40(8): 573-579. |
|