[1] |
彭敏惠, 吴钢. 灾难与重建中的信息力量——急性淋巴细胞白血病患儿家庭信息获取障碍与对策[J]. 图书馆论坛, 2023: 1-10.
|
[2] |
Rahiman EA, Rajendran A, Sankhyan N, et al. Acute neurological complications during acute lymphoblastic leukemia therapy: A single-center experience over 10 years[J]. Indian J Cancer, 2021, 58(4): 545-552.
doi: 10.4103/ijc.IJC_422_19
pmid: 34380827
|
[3] |
Deak D, Gorcea-Andronic N, Sas V, et al. A narrative review of central nervous system involvement in acute leukemias[J]. Ann Transl Med, 2021, 9(1): 68.
doi: 10.21037/atm-20-3140
pmid: 33553361
|
[4] |
Lenk L, Alsadeq A, Schewe DM. Involvement of the central nervous system in acute lymphoblastic leukemia: opinions on molecular mechanisms and clinical implications based on recent data[J]. Cancer Metastasis Rev, 2020, 39(1): 173-187.
|
[5] |
Swaroop A, Oyer JA, Will CM, et al. An activating mutation of the NSD2 histone methyltransferase drives oncogenic reprogramming in acute lymphocytic leukemia[J]. Oncogene, 2019, 38(5): 671-686.
doi: 10.1038/s41388-018-0474-y
pmid: 30171259
|
[6] |
Anastasopoulou S, Harila-Saari A, Als-Nielsen B, et al. Does minimal central nervous system involvement in childhood acute lymphoblastic leukemia increase the risk for central nervous system toxicity?[J]. Pediatr Blood Cancer, 2022, 69(7): e29745.
|
[7] |
候威锋, 苏舒, 陈颖茜, 等. 基于集成磁共振成像的急性淋巴细胞性白血病儿童脑体积测量[J]. 中山大学学报(医学科学版), 2023, 44(2): 271-276.
|
[8] |
Anastasopoulou S, Nielsen RL, Als-Nielsen B, et al. Acute central nervous system toxicity during treatment of pediatric acute lymphoblastic leukemia: phenotypes, risk factors and genotypes[J]. Haematologica, 2022, 107(10): 2318-2328.
|
[9] |
Sliwa-Tytko P, Kaczmarska A, Lejman M, et al. Neurotoxicity associated with treatment of acute lym-phoblastic leukemia chemotherapy and immunotherapy[J]. Int J Mol Sci, 2022, 23(10): 5515.
|
[10] |
Pehlivan UA, Gurkan E, Acar IH, et al. Central nervous system neurotoxicity associated with nelarabine in T-cell acute lymphoblastic leukemia[J]. J Oncol Pharm Pract, 2023, 29(1): 246-251.
|
[11] |
Lim KY, Kim SI, Kim H, et al. Toxic leukoencephalopathy with axonal spheroids caused by chemotherapeutic drugs other than methotrexate[J]. Bmc Neurol, 2022, 22(1): 288.
doi: 10.1186/s12883-022-02818-8
pmid: 35922754
|
[12] |
席艳丽, 王瑞珠, 徐化凤, 等. 3.0 TMR扩散张量成像对儿童急性淋巴细胞白血病化疗前后认知功能的评价[J]. 临床放射学杂志, 2021, 40(4): 783-789.
|
[13] |
Wang LS, Zou LW, Chen Q, et al. Gray matter structural network disruptions in survivors of acute lymphoblastic leukemia with chemotherapy treatment[J]. Acad Radiol, 2020, 27(3): E27-E34.
doi: 10.1016/j.acra.2019.04.010
pmid: 31171463
|
[14] |
Konsman JP, Laaker CJ, Lloyd KR, et al. Translationally relevant mouse model of early life cancer and chemo-therapy exposure results in brain and small intestine cytokine responses: a potential link to cognitive deficits[J]. Brain Behav Immun, 2022, 99: 192-202.
|
[15] |
Wen J, Maxwell RR, Wolf AJ, et al. Methotrexate causes persistent deficits in memory and executive function in a juvenile animal model[J]. Neuropharmacology, 2018, 139: 76-84.
doi: S0028-3908(18)30364-2
pmid: 29990472
|
[16] |
Sági JC, Gezsi A, Egyed B, et al. Pharmacogenetics of the central nervous system-toxicity and relapse affecting the CNS in pediatric acute lymphoblastic leukemia[J]. Cancers (Basel), 2021, 13(10): 2333.
|
[17] |
Withrow DR, Anderson H, Armstrong GT, et al. Pooled analysis of meningioma risk following treatment for childhood cancer[J]. JAMA Oncol, 2022, 8(12): 1756-1764.
doi: 10.1001/jamaoncol.2022.4425
pmid: 36201196
|
[18] |
Follin C, Erfurth EM. Long-term effect of cranial radiotherapy on pituitary-hypothalamus area in childhood acute lymphoblastic leukemia survivors[J]. Curr Treat Options Oncol, 2016, 17(9): 50.
|
[19] |
Zajac-Spychala O, Pawlak M, Karmelita-Katulska K, et al. Anti-leukemic treatment-induced neurotoxicity in long-term survivors of childhood acute lymphoblastic leukemia: Impact of reduced central nervous system radiotherapy and intermediate- to high-dose methotrexate[J]. Leuk Lymphoma, 2018, 59(10): 2342-2351.
|
[20] |
Newton J, Brown T, Corley C, et al. Cranial irradiation impairs juvenile social memory and modulates hippocampal physiology[J]. Brain Res, 2020, 1748: 147095.
|
[21] |
杨洋, 袁新宇, 王瑶, 等. 儿童异基因造血干细胞移植后可逆性后部白质脑综合征MRI表现[J]. 中国医学影像技术, 2021, 37(6): 810-814.
|
[22] |
Ramanathan S, Subramani V, Kembhavi S, et al. Clinical features, predictors and outcome of posterior reversible encephalopathy syndrome (PRES) in children with hematolymphoid malignancies[J]. Childs Nerv Syst, 2022, 38(9): 1689-1698.
|
[23] |
Zajac-Spychala O, Pawlak MA, Karmelita-Katulska K, et al. Long-term brain status and cognitive impairment in children treated for high-risk acute lymphoblastic leukemia with and without allogeneic hematopoietic stem cell transplantation: a single-center study[J]. Pediatr Blood & Cancer, 2020, 67(6): e28224.
|
[24] |
Mak CYK, Cheuk DKL, Lee PPW, et al. Neurological complications in Chinese children undergoing hematopoietic stem cell transplantation[J]. Childs Nerv Syst, 2021, 37(12): 3753-3767.
|
[25] |
Dreneva AA, Devyaterikova A. Comparative analysis of cognitive, motor, and visual-motor functions in pediatric acute lymphoblastic leukemia survivors with and without allogeneic hematopoietic stem cell transplantation[J]. Arch Clin Neuropsychol, 2022, 37(7): 1493-1501.
|
[26] |
Harrison RA, Sharafeldin N, Rexer JL, et al. Neurocognitive impairment after hematopoietic stem cell transplant for hematologic malignancies: phenotype and mechanisms[J]. Oncologist, 2021, 26(11): e2021-e2033.
|
[27] |
Sakaguchi Y, Natsume J, Kidokoro H, et al. Change of white matter integrity in children with hematopoietic stem cell transplantation[J]. Pediatr Neurol, 2020, 111: 78-84.
doi: S0887-8994(20)30199-5
pmid: 32951667
|
[28] |
Xiao X, Huang S, Chen S, et al. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies[J]. J Exp Clin Cancer Res, 2021, 40(1): 367.
doi: 10.1186/s13046-021-02148-6
pmid: 34794490
|
[29] |
Gust J, Finney OC, Li D, et al. Glial injury in neurotoxicity after pediatric CD19-directed chimeric antigen receptor T cell therapy[J]. Ann Neurol, 2019, 86(1): 42-54.
doi: 10.1002/ana.25502
pmid: 31074527
|
[30] |
Shalabi H, Wolters PL, Martin S, et al. Systematic evaluation of neurotoxicity in children and young adults undergoing CD22 chimeric antigen receptor T-cell therapy[J]. J Immunother, 2018, 41(7): 350-358.
doi: 10.1097/CJI.0000000000000241
pmid: 30048343
|
[31] |
Rao CK, Kamoroff S, Zorrilla J, et al. Super-refractory status epilepticus during blinatumomab initiation for B-cell acute lymphoblastic leukemia[J]. Immunotherapy, 2022, 14(18): 1437-1442.
|
[32] |
Tang J, Yu J, Cai J, et al. Prognostic factors for CNS control in children with acute lymphoblastic leukemia treated without cranial irradiation[J]. Blood, 2021, 138(4): 331-343.
doi: 10.1182/blood.2020010438
pmid: 33684941
|
[33] |
Garcia KA, Cherian S, Stevenson PA, et al. Cerebrospinal fluid flow cytometry and risk of central nervous system relapse after hyperCVAD in adults with acute lymphoblastic leukemia[J]. Cancer, 2022, 128(7): 1411-1417.
|
[34] |
Yu Q, Zhong X, Chen B, et al. Isobaric labeling strategy utilizing 4-plex N, N-dimethyl leucine (D: leu) tags reveals proteomic changes induced by chemotherapy in cerebrospinal fluid of children with B-cell acute lymphoblastic leukemia[J]. J Proteome Res, 2020, 19(7): 2606-2616.
|
[35] |
Lin LP, Su S, Hou W, et al. Glymphatic system dysfunction in pediatric acute lymphoblastic leukemia without clinically diagnosed central nervous system infiltration: a novel DTI-ALPS method[J]. Eur Radiol, 2023, 33(5): 3726-3734.
doi: 10.1007/s00330-023-09473-8
pmid: 36882529
|
[36] |
Svärd D, Erfurth EM, Hellerstedt R, et al. Cognitive interference processing in adult survivors of childhood acute lymphoblastic leukemia using functional magnetic resonance imaging[J]. Acta Oncologica, 2022, 61(3): 333-340.
|
[37] |
Song R, Glass JO, Reddick WE. Modified diffusion tensor image processing pipeline for archived studies of patients with leukoencephalopathy[J]. J Magn Reson Imaging, 2021, 54(3): 997-1008.
doi: 10.1002/jmri.27636
pmid: 33856092
|
[38] |
Brace KM, Lee WW, Cole PD, et al. Childhood leukemia survivors exhibit deficiencies in sensory and cognitive processes, as reflected by event-related brain potentials after completion of curative chemotherapy: a preliminary investigation[J]. J Clin Exp Neuropsyc, 2019, 41(8): 814-831.
|
[39] |
Li R, Tang JH, Zhang BB, et al. Clinical analysis of childhood acute lymphoblastic leukemia with epilepsy seizures[J]. Front Neurol, 2022, 13: 824268.
|
[40] |
Choi HS, Kim HJ, Kang HJ, et al. Thromboembolism in children with cancer: a retrospective multicenter study in Korea[J]. J Thromb Thrombolysis, 2019, 47(4): 558-565.
|
[41] |
Benkirane A, Mulquin N, London F. Methotrexate-induced stroke-like encephalopathy: Beware the stroke mimic[J]. J Belg Soc Radiol, 2022, 106(1): 98.
doi: 10.5334/jbsr.2935
pmid: 36382017
|
[42] |
Kopmar NE, Cassaday RD. How I prevent and treat central nervous system disease in adults with acute lymphoblastic leukemia[J]. Blood, 2023, 141(12): 1379-1388.
|