临床儿科杂志 ›› 2023, Vol. 41 ›› Issue (10): 715-720.doi: 10.12372/jcp.2023.22e1186
• 继续医学教育 • 上一篇
收稿日期:
2022-09-05
出版日期:
2023-10-15
发布日期:
2023-10-08
通讯作者:
张勤, 电子信箱:Received:
2022-09-05
Online:
2023-10-15
Published:
2023-10-08
摘要:
支气管肺发育不良(BPD)是胎龄≤32周早产儿常见的一种并发症,对新生儿呼吸及神经系统发育带来长远的不良影响。BPD病因复杂,是多种因素共同作用导致,呼吸道微生态的多样性及其演变方式的异常会增加BPD患病风险。呼吸道微生态受多种因素的影响,其失衡会增加日后患各系统疾病的风险。文章综述了呼吸道微生态的影响因素及其在BPD中的意义及研究进展,旨在加强二者关系的理解,为BPD的预防及治疗提供新的切入点。
任淑英, 张勤. 呼吸道微生态的影响因素及其在支气管肺发育不良中的意义[J]. 临床儿科杂志, 2023, 41(10): 715-720.
REN Shuying, ZHANG Qin. Influencing factors of respiratory tract microecology and its significance in bronchopulmonary dysplasia[J]. Journal of Clinical Pediatrics, 2023, 41(10): 715-720.
[1] |
Homan TD, Nayak RP. Short- and long-term complications of bronchopulmonary dysplasia[J]. Respir Care, 2021, 66(10): 1618-1629.
doi: 10.4187/respcare.08401 pmid: 34552015 |
[2] | Gilfillan M, Bhandari A, Bhandari V. Diagnosis and management of bronchopulmonary dysplasia[J]. BMJ, 2021, 375: n1974. |
[3] |
Piersigilli F, Van Grambezen B, Hocq C, et al. Nutrients and microbiota in lung diseases of prematurity: the placenta-gut-lung triangle[J]. Nutrients, 2020, 12(2):469.
doi: 10.3390/nu12020469 |
[4] |
Gao XY, Dai YH, Fan DZ, et al. The association between the microbes in the tracheobronchial aspirate fluid and bronchopulmonary dysplasia in preterm infants[J]. Pediatr Neonatol, 2020, 61(3): 306-310.
doi: 10.1016/j.pedneo.2019.12.010 |
[5] |
El Saie A, Fu C, Grimm SL, et al. Metabolome and microbiome multi-omics integration from a murine lung inflammation model of bronchopulmonary dysplasia[J]. Pediatr Res, 2022, 92(6):1580-1589.
doi: 10.1038/s41390-022-02002-1 pmid: 35338351 |
[6] |
Lohmann P, Luna RA, Hollister EB, et al. The airway microbiome of intubated premature infants: characteristics and changes that predict the development of bronchopulmonary dysplasia[J]. Pediatr Res, 2014, 76(3): 294-301.
doi: 10.1038/pr.2014.85 pmid: 24941215 |
[7] |
Gallacher D, Mitchell E, Alber D, et al. Dissimilarity of the gut-lung axis and dysbiosis of the lower airways in ventilated preterm infants[J]. Eur Respir J, 2020, 55(5): 1901909.
doi: 10.1183/13993003.01909-2019 |
[8] |
Pattaroni C, Watzenboeck ML, Schneidegger S, et al. Early-life formation of the microbial and immunological environment of the human airways[J]. Cell Host Microbe, 2018, 24(6):857-865.
doi: S1931-3128(18)30557-2 pmid: 30503510 |
[9] |
Mortensen MS, Rasmussen MA, Stokholm J, et al. Modeling transfer of vaginal microbiota from mother to infant in early life[J]. Elife, 2021, 10: e57051.
doi: 10.7554/eLife.57051 |
[10] |
Lal CV, Travers C, Aghai ZH, et al. The airway microbiome at birth[J]. Sci Rep, 2016, 6: 31023.
doi: 10.1038/srep31023 pmid: 27488092 |
[11] |
Sakwinska O, Foata F, Berger B, et al. Does the maternal vaginal microbiota play a role in seeding the microbiota of neonatal gut and nose?[J]. Benef Microbes, 2017, 8(5):763-778.
doi: 10.3920/BM2017.0064 pmid: 29022384 |
[12] | Wu S, Ren L, Li J, et al. Breastfeeding might partially contribute to gut microbiota construction and stabilization of propionate metabolism in cesarean-section infants[J]. Eur J Nutr, 202362(2):615-623. |
[13] |
Kobeshavidze N, Chikviladze D, Gachechiladze K, et al. The microbial structure of the mucous membrane of the respiratory tract in premature infants[J]. Georgian Med News, 2019(288): 131-135.
pmid: 31101792 |
[14] |
Sakai AM, Iensue T, Pereira KO, et al. Colonization by multidrug-resistant microorganisms of hospitalized newborns and their mothers in the neonatal unit context[J]. J Infect Dev Ctries, 2020, 14(7): 765-771.
doi: 10.3855/jidc.12091 |
[15] |
Tirone C, Paladini A, De Maio F, et al. The relationship between maternal and neonatal microbiota in spontaneous preterm birth: a pilot study[J]. Front Pediatr, 2022, 10: 909962.
doi: 10.3389/fped.2022.909962 |
[16] |
Hjelmsø MH, Shah SA, Thorsen J, et al. Prenatal dietary supplements influence the infant airway microbiota in a randomized factorial clinical trial[J]. Nat Commun, 2020, 11(1): 426.
doi: 10.1038/s41467-020-14308-x pmid: 31969566 |
[17] |
Christensen ED, Hjelmso MH, Thorsen J, et al. The developing airway and gut microbiota in early life is influenced by age of older siblings[J]. Microbiome, 2022, 10(1): 106.
doi: 10.1186/s40168-022-01305-z pmid: 35831879 |
[18] |
Cardelli E, Calvigioni M, Vecchione A, et al. Delivery mode shapes the composition of the lower airways microbiota in newborns[J]. Front Cell Infect Microbiol, 2021, 11: 808390.
doi: 10.3389/fcimb.2021.808390 |
[19] |
Gomez-Gallego C, Garcia-Mantrana I, Salminen S, et al. The human milk microbiome and factors influencing its composition and activity[J]. Semin Fetal Neonatal Med, 2016, 21(6): 400-405.
doi: S1744-165X(16)30017-8 pmid: 27286644 |
[20] |
Chen C, Yin Q, Wu H, et al. Different effects of premature infant formula and breast milk on intestinal microecological development in premature infants[J]. Front Microbiol, 2019, 10: 3020.
doi: 10.3389/fmicb.2019.03020 pmid: 32010090 |
[21] |
Huang J, Zhang L, Tang J, et al. Human milk as a protective factor for bronchopulmonary dysplasia: a systematic review and meta-analysis[J]. Arch Dis Child Fetal Neonatal Ed, 2019, 104(2): F128-F136.
doi: 10.1136/archdischild-2017-314205 |
[22] |
Chen W, Lo YC, Huang PH, et al. Increased antibiotic exposure in early life is associated with adverse outcomes in very low birth weight infants[J]. J Chin Med Assoc, 2022, 85(9): 939-943.
doi: 10.1097/JCMA.0000000000000749 |
[23] |
Willis KA, Siefker DT, Aziz MM, et al. Perinatal maternal antibiotic exposure augments lung injury in offspring in experimental bronchopulmonary dysplasia[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 318(2): L407-L418.
doi: 10.1152/ajplung.00561.2018 |
[24] |
Ran X, He Y, Ai Q, et al. Effect of antibiotic-induced intestinal dysbacteriosis on bronchopulmonary dysplasia and related mechanisms[J]. J Transl Med, 2021, 19(1): 155.
doi: 10.1186/s12967-021-02794-6 pmid: 33874953 |
[25] |
Rasmussen MA, Thorsen J, Dominguez-Bello MG, et al. Ecological succession in the vaginal microbiota during pregnancy and birth[J]. ISME J, 2020, 14(9): 2325-2335.
doi: 10.1038/s41396-020-0686-3 pmid: 32488167 |
[26] |
Lehtimäki J, Thorsen J, Rasmussen MA, et al. Urbanized microbiota in infants, immune constitution, and later risk of atopic diseases[J]. J Allergy Clin Immunol, 2021, 148(1): 234-243.
doi: 10.1016/j.jaci.2020.12.621 pmid: 33338536 |
[27] | Schoos AM, Kragh M, Ahrens P, et al. Season of birth impacts the neonatal nasopharyngeal microbiota[J]. Children (Basel), 2020, 7(5): 45. |
[28] |
Rice JL, McGrath-Morrow SA, Collaco JM. Indoor air pollution sources and respiratory symptoms in bronchopulmonary dysplasia[J]. J Pediatr, 2020, 222:85-90.
doi: 10.1016/j.jpeds.2020.03.010 |
[29] |
Brewer MR, Maffei D, Cerise J, et al. Determinants of the lung microbiome in intubated premature infants at risk for bronchopulmonary dysplasia[J]. J Matern Fetal Neonatal Med, 2021, 34(19):3220-3226.
doi: 10.1080/14767058.2019.1681961 |
[30] |
Wang HC, Tsai MH, Chu SM, et al. Clinical characteristics and outcomes of neonates with polymicrobial ventilator-associated pneumonia in the intensive care unit[J]. BMC Infect Dis, 2021, 21(1):965.
doi: 10.1186/s12879-021-06673-9 |
[31] | Van Mechelen K, Meeus M, Matheeussen V, et al. Association between maternal cervicovaginal swab positivity for Ureaplasma spp. or other microorganisms and neonatal respiratory outcome and mortality[J]. J Perinatol, 2021, 41(6): 1-11. |
[32] |
Polglase GR, Dalton RG, Nitsos I, et al. Pulmonary vascular and alveolar development in preterm lambs chronically colonized with Ureaplasma parvum[J]. Am J Physiol Lung Cell Mol Physiol, 2010, 299(2): L232-L241.
doi: 10.1152/ajplung.00369.2009 |
[33] |
Colaizy TT, Morris CD, Lapidus J, et al. Detection of ureaplasma DNA in endotracheal samples is associated with bronchopulmonary dysplasia after adjustment for multiple risk factors[J]. Pediatr Res, 2007, 61(5 Pt 1):578-583.
pmid: 17413863 |
[34] |
Cui TX, Brady AE, Fulton CT, et al. CCR2 mediates chronic LPS-induced pulmonary inflammation and hypoalveolarization in a Murine Model of bronchopulmonary dysplasia[J]. Front Immunol, 2020, 11:579628.
doi: 10.3389/fimmu.2020.579628 |
[35] |
Piersigilli F, Bhandari V. Metabolomics of bron-chopulmonary dysplasia[J]. Clin Chim Acta, 2020, 500: 109-114.
doi: S0009-8981(19)32057-1 pmid: 31689411 |
[36] |
Gentle SJ, Lal CV. Predicting BPD: lessons learned from the airway microbiome of preterm infants[J]. Front Pediatr, 2019, 7: 564.
doi: 10.3389/fped.2019.00564 pmid: 32117822 |
[37] |
Xu Y, Huang Y, Shen Z, et al. The nasal microbiome of predicting bronchopulmonary dysplasia in preterm infants[J]. Sci Rep, 2022, 12(1): 7727.
doi: 10.1038/s41598-022-10770-3 pmid: 35546156 |
[38] |
Xu Q, Yu J, Liu D, et al. The airway microbiome and metabolome in preterm infants: potential biomarkers of bronchopulmonary dysplasia[J]. Front Pediatr, 2022, 10: 862157.
doi: 10.3389/fped.2022.862157 |
[39] |
Lauer T, Behnke J, Oehmke F, et al. Bacterial colonization within the first six weeks of life and pulmonary outcome in preterm infants <1000 g[J]. J Clin Med, 2020, 9(7):2240.
doi: 10.3390/jcm9072240 |
[40] |
Qu Y, Guo S, Liu Y, et al. Association between probiotics and bronchopulmonary dysplasia in preterm infants[J]. Sci Rep, 2021, 11(1): 17060.
doi: 10.1038/s41598-021-96489-z pmid: 34426616 |
[41] |
Chen WY, Lo YC, Huang PH, et al. Increased antibiotic exposure in early life is associated with adverse outcomes in very low birth weight infants[J]. J Chin Med Assoc, 2022, 85(9):939-943.
doi: 10.1097/JCMA.0000000000000749 |
[42] |
Li Y, He L, Zhao Q, et al. Microbial and metabolic profiles of bronchopulmonary dysplasia and therapeutic effects of potential probiotics Limosilactobacillus reuteri and Bifidobacterium bifidum[J]. J Appl Microbiol, 2022, 133(2): 908-921.
doi: 10.1111/jam.15602 |
[43] |
Freeman AE, Willis KA, Qiao L, et al. Microbial induced redox imbalance in the neonatal lung is ameliorated by live biotherapeutics[J]. Am J Respir Cell Mol Biol, 2023, 68(3):267-268.
doi: 10.1165/rcmb.2021-0508OC |
[44] |
Yang K, Dong W. Perspectives on probiotics and bronchopulmonary dysplasia[J]. Front Pediatr, 2020, 8:570247.
doi: 10.3389/fped.2020.570247 |
[1] | 林玉聪, 高亮, 郑直. 晚期早产儿中小于胎龄儿的影响因素分析[J]. 临床儿科杂志, 2023, 41(7): 514-518. |
[2] | 赵彩艳, 孙玄, 陈玲. 早产儿血流动力学显著的动脉导管未闭危险因素和预测指标研究进展[J]. 临床儿科杂志, 2023, 41(6): 475-479. |
[3] | 王丽平, 尤优, 殷张华, 王依闻, 陈笋, 夏红萍. 支气管肺发育不良极早产儿合并肺静脉狭窄2例报告[J]. 临床儿科杂志, 2023, 41(4): 289-293. |
[4] | 朱兴旺, 史源. 无创高频振荡通气在早产儿呼吸支持中的临床应用[J]. 临床儿科杂志, 2023, 41(10): 641-645. |
[5] | 李芳, 王利. 脐血来源干细胞治疗早产儿疾病临床研究进展与挑战[J]. 临床儿科杂志, 2023, 41(10): 646-653. |
[6] | 周建国. 超早产儿死亡原因和对策建议[J]. 临床儿科杂志, 2023, 41(10): 654-657. |
[7] | 张烨, 齐敏, 施春燕, 杨世炳, 姜舟. 超早产儿临床特征及死亡危险因素分析[J]. 临床儿科杂志, 2023, 41(10): 665-669. |
[8] | 卢晓燕, 陈绍红, 陈影影, 周文俊, 周婵, 宋燕, 李禄全, 唐文燕. 34周以下早产儿促甲状腺激素延迟升高及影响因素[J]. 临床儿科杂志, 2023, 41(10): 675-679. |
[9] | 查新祎, 王依闻, 毛朋亮, 陈鸣艳, 蒋玮, 王华伟, 胡雪峰, 施丽萍, 朱雪萍, 钱继红. 乳糖酶添加剂对早产儿乳糖不耐受有效性及安全性:一项前瞻性、多中心、随机对照研究[J]. 临床儿科杂志, 2023, 41(1): 34-41. |
[10] | 位乐乐, 宋娟, 董会敏, 决珍珍, 李文冬, 徐发林, 王军. 极早产儿输血相关性坏死性小肠结肠炎危险因素分析[J]. 临床儿科杂志, 2022, 40(9): 666-671. |
[11] | 严永东, 王婷, 滑洁. 益生菌预防和治疗儿童过敏性疾病的现状[J]. 临床儿科杂志, 2022, 40(8): 573-579. |
[12] | 夏红萍, 张拥军. 重度支气管肺发育不良的表型特征和治疗策略[J]. 临床儿科杂志, 2022, 40(6): 401-406. |
[13] | 丁瑛雪. 早产儿支气管肺发育不良的表型演变[J]. 临床儿科杂志, 2022, 40(6): 407-412. |
[14] | 李芳, 刘立婷. 支气管肺发育不良诊断及治疗中几个关注问题[J]. 临床儿科杂志, 2022, 40(6): 413-419. |
[15] | 徐儒政, 姜旭, 孙斌. 胎龄<32周早产儿支气管肺发育不良临床特点[J]. 临床儿科杂志, 2022, 40(6): 420-424. |
|