临床儿科杂志 ›› 2023, Vol. 41 ›› Issue (3): 229-234.doi: 10.12372/jcp.2023.22e0943
阮雪华 综述, 孙晶, 孙锟 审校
收稿日期:
2022-07-13
出版日期:
2023-03-15
发布日期:
2023-03-10
Reviewer: RUAN Xuehua, Reviser: SUN Jing, SUN Kun
Received:
2022-07-13
Online:
2023-03-15
Published:
2023-03-10
摘要:
先天性心脏病是一种常见的出生缺陷,在我国发病率呈上升趋势,目前多认为先天性心脏病是遗传因素和环境因素共同作用的结果,但具体的发病机制尚不清楚。越来越多的研究聚焦于父母孕前及孕期环境暴露情况对先天性心脏病的影响,文章总结近年来与之相关的环境因素,概括潜在的影响机制,为防控先天性心脏病的发生提供参考。
阮雪华, 孙晶, 孙锟. 环境相关因素与先天性心脏病研究进展[J]. 临床儿科杂志, 2023, 41(3): 229-234.
RUAN Xuehua, SUN Jing, SUN Kun. Research progress on environmental factors and congenital heart disease[J]. Journal of Clinical Pediatrics, 2023, 41(3): 229-234.
[1] | 中华人民共和国卫生部. 中国出生缺陷防治报告(2012)[M]. 北京, 2012: 2-5. |
[2] |
Lim TB, Foo SYR, Chen CK. The Role of epigenetics in congenital heart disease[J]. Genes (Basel), 2021, 12(3): 390.
doi: 10.3390/genes12030390 |
[3] | 《中国心血管健康与疾病报告》编写组. 《中国心血管健康与疾病报告2020》要点解读[J]. 中国心血管杂志, 2021, 26(3): 209-218. |
[4] |
Deng C, Pu J, Deng Y, et al. Association between maternal smoke exposure and congenital heart defects from a case-control study in China[J]. Sci Rep, 2022, 12(1): 14973.
doi: 10.1038/s41598-022-18909-y pmid: 36056058 |
[5] |
Zhao L, Chen L, Yang T, et al. Parental smoking and the risk of congenital heart defects in offspring: an updated meta-analysis of observational studies[J]. Eur J Prev Cardiol, 2020, 27(12): 1284-1293.
doi: 10.1177/2047487319831367 pmid: 30905164 |
[6] | Cheng W, Zhou R, Feng Y, et al. Mainstream smoke and sidestream smoke affect the cardiac differentiation of mouse embryonic stem cells discriminately[J]. Toxicology, 2016, 357-358: 1-10. |
[7] |
Jiang XY, Feng YL, Ye LT, et al. Inhibition of Gata4 and Tbx5 by nicotine-mediated DNA methylation in myocardial differentiation[J]. Stem Cell Reports, 2017, 8(2): 290-304.
doi: 10.1016/j.stemcr.2016.12.016 |
[8] |
Li D, Xu W, Qiu Y, et al. Maternal air pollution exposure and neonatal congenital heart disease: a multi-city cross-sectional study in eastern China[J]. Int J Hyg Environ Health, 2022, 240: 113898.
doi: 10.1016/j.ijheh.2021.113898 |
[9] |
Zhang W, Yang Y, Liu Y, et al. Associations between congenital heart disease and air pollutants at different gestational weeks: a time-series analysis[J]. Environ Geochem Health, 2022. doi: 10.1007/s10653-022-01315-8.
doi: 10.1007/s10653-022-01315-8 |
[10] |
Sun J, Wang J, Yang J, et al. Association between maternal exposure to indoor air pollution and offspring congenital heart disease: a case-control study in East China[J]. BMC Public Health, 2022, 22(1): 767.
doi: 10.1186/s12889-022-13174-0 pmid: 35428227 |
[11] | Cai J, Zhao Y, Liu P, et al. Exposure to particulate air pollution during early pregnancy is associated with placental DNA methylation[J]. Sci Total Environ, 2017, (607-608): 1103-1108. |
[12] |
Karoui A, Crochemore C, Harouki N, et al. Nitrogen dioxide inhalation exposures induce cardiac mitochondrial reactive oxygen species production, impair mitochondrial function and promote coronary endothelial dysfunction[J]. Int J Environ Res Public Health, 2020, 17(15): 5526.
doi: 10.3390/ijerph17155526 |
[13] |
Hettfleisch K, Bernardes LS, Carvalho MA, et al. Short-term exposure to urban air pollution and influences on placental vascularization indexes[J]. Environ Health Perspect, 2017, 125(4): 753-759.
doi: 10.1289/EHP300 |
[14] |
Rappazzo KM, Warren JL, Meyer RE, et al. Maternal residential exposure to agricultural pesticides and birth defects in a 2003 to 2005 North Carolina birth cohort[J]. Birth Defects Res A Clin Mol Teratol, 2016, 106(4): 240-249.
doi: 10.1002/bdra.23479 |
[15] |
Carmichael SL, Yang W, Roberts E, et al. Residential agricultural pesticide exposures and risk of selected congenital heart defects among offspring in the San Joaquin Valley of California[J]. Environ Res, 2014, 135: 133-138.
doi: 10.1016/j.envres.2014.08.030 pmid: 25262086 |
[16] | Abdollahi M, Ranjbar A, Shadnia S, et al. Pesticides and oxidative stress: a review[J]. Med Sci Monit, 2004, 10(6): RA141-RA147. |
[17] |
Ou Y, Bloom MS, Nie Z, et al. Associations between toxic and essential trace elements in maternal blood and fetal congenital heart defects[J]. Environ Int, 2017, 106: 127-134.
doi: S0160-4120(16)31042-X pmid: 28645012 |
[18] |
Sun J, Mao B, Wu Z, et al. Relationship between maternal exposure to heavy metal titanium and offspring congenital heart defects in Lanzhou, China: a nested case-control study[J]. Front Public Health, 2022, 10: 946439.
doi: 10.3389/fpubh.2022.946439 |
[19] |
Wang M, Tian Y, Yu P, et al. Association between congenital heart defects and maternal manganese and iron concentrations: a case-control study in China[J]. Environ Sci Pollut Res Int, 2022, 29(18): 26950-26959.
doi: 10.1007/s11356-021-17054-9 |
[20] |
Zhang N, Liu Z, Tian X, et al. Barium exposure increases the risk of congenital heart defects occurrence in offspring[J]. Clin Toxicol (Phila), 2018, 56(2): 132-139.
doi: 10.1080/15563650.2017.1343479 pmid: 28705031 |
[21] | 邱依聆, 陈乐, 江燕萍. 重金属暴露影响DNA甲基化并导致先天性心脏病发生的研究进展[J]. 实用医学杂志, 2021, 37(5): 692-695. |
[22] |
Lin S, Lin Z, Ou Y, et al. Maternal ambient heat exposure during early pregnancy in summer and spring and congenital heart defects - a large US population-based, case-control study[J]. Environ Int, 2018, 118: 211-221.
doi: S0160-4120(18)30280-0 pmid: 29886237 |
[23] |
Yu X, Miao H, Zeng Q, et al. Associations between ambient heat exposure early in pregnancy and risk of congenital heart defects: a large population-based study[J]. Environ Sci Pollut Res Int, 2022, 29(5): 7627-7638.
doi: 10.1007/s11356-021-16237-8 |
[24] |
Auger N, Fraser WD, Sauve R, et al. Risk of congenital heart defects after ambient heat exposure early in pregnancy[J]. Environ Health Perspect, 2017, 125(1): 8-14.
doi: 10.1289/EHP171 |
[25] |
Jiang W, Liu Z, Ni B, et al. Independent and interactive effects of air pollutants and ambient heat exposure on congenital heart defects[J]. Reprod Toxicol, 2021, 104: 106-113.
doi: 10.1016/j.reprotox.2021.07.007 pmid: 34311057 |
[26] |
Hutson MR, Keyte AL, Hernández-Morales M, et al. Temperature-activated ion channels in neural crest cells confer maternal fever-associated birth defects[J]. Sci Signal, 2017, 10(500): eaal4055.
doi: 10.1126/scisignal.aal4055 |
[27] | 曹晨, 沈艳, 顾宁. 电磁辐射对人体健康影响的多组学研究进展[J]. 南京医科大学学报(社会科学版), 2022, 22(4): 318-324 |
[28] |
Zhao D, Guo L, Zhang R, et al. Risk of congenital heart disease due to exposure to common electrical appliances during early pregnancy: a case-control study[J]. Environ Sci Pollut Res Int, 2021, 28(4): 4739-4748.
doi: 10.1007/s11356-020-10852-7 |
[29] |
Morton LM, Karyadi DM, Stewart C, et al. Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident[J]. Science, 2021, 372(6543): eabg2538.
doi: 10.1126/science.abg2538 |
[30] |
Hou Q, Wang M, Wu S, et al. Oxidative changes and apoptosis induced by 1800-MHz electromagnetic radiation in NIH/3T3 cells[J]. Electromagn Biol Med, 2015, 34(1): 85-92.
doi: 10.3109/15368378.2014.900507 pmid: 24665905 |
[31] |
Kim JH, Jeon S, Choi HD, et al. Exposure to longterm evolution radiofrequency electromagnetic fields decreases neuroblastoma cell proliferation via akt/mtormediated cellular senescence[J]. J Toxicol Environ Health A, 2021, 84(20): 846-857.
doi: 10.1080/15287394.2021.1944944 |
[32] |
Øyen N, Diaz LJ, Leirgul E, et al. Prepregnancy diabetes and offspring risk of congenital heart disease: a nationwide cohort study[J]. Circulation, 2016, 133(23): 2243-2253.
doi: 10.1161/CIRCULATIONAHA.115.017465 pmid: 27166384 |
[33] |
Chen ZY, Mao SF, Guo LH, et al. Effect of maternal pregestational diabetes mellitus on congenital heart diseases[J]. World J Pediatr, 2022. doi: 10.1007/s12519-022-00582-w.
doi: 10.1007/s12519-022-00582-w |
[34] |
Zhang S, Qiu X, Wang T, et al. Hypertensive disorders in pregnancy are associated with congenital heart defects in offspring: a systematic review and meta-analysis[J]. Front Cardiovasc Med, 2022, 9: 842878.
doi: 10.3389/fcvm.2022.842878 |
[35] |
Yang G, Deng X, Xiao J, et al. Maternal fever during preconception and conception is associated with congenital heart diseases in offspring: an updated meta-analysis of observational studies[J]. Medicine (Baltimore), 2021, 100(9): e24899.
doi: 10.1097/MD.0000000000024899 |
[36] |
Wang T, Li Q, Chen L, et al. Maternal Viral infection in early pregnancy and risk of congenital heart disease in offspring: a prospective cohort study in central China[J]. Clin Epidemiol, 2022, 14: 71-82.
doi: 10.2147/CLEP.S338870 pmid: 35082532 |
[37] |
Sun M, Zhang S, Li Y, et al. Effect of maternal antidepressant use during the pre-pregnancy/early pregnancy period on congenital heart disease: a prospective cohort study in central China[J]. Front Cardiovasc Med, 2022, 9: 916882.
doi: 10.3389/fcvm.2022.916882 |
[38] |
Saad H, Sinclair M, Bunting B. Maternal sociodemographic characteristics, early pregnancy behaviours, and livebirth outcomes as congenital heart defects risk factors - Northern Ireland 2010-2014[J]. BMC Pregnancy Childbirth, 2021, 21(1): 759.
doi: 10.1186/s12884-021-04223-4 |
[39] |
Crider KS, Qi YP, Yeung LF, et al. Folic acid and the prevention of birth defects: 30 years of opportunity and controversies[J]. Annu Rev Nutr. 2022, 42: 423-452.
doi: 10.1146/annurev-nutr-043020-091647 pmid: 35995050 |
[40] |
Qu Y, Lin S, Zhuang J, et al. First-trimester maternal folic acid supplementation reduced risks of severe and most congenital heart diseases in offspring: a large case-control study[J]. J Am Heart Assoc, 2020, 9(13): e015652.
doi: 10.1161/JAHA.119.015652 |
[41] |
Wang D, Jin L, Zhang J, et al. Maternal periconceptional folic acid supplementation and risk for fetal congenital heart defects[J]. J Pediatr, 2022, 240: 72-78.
doi: 10.1016/j.jpeds.2021.09.004 |
[42] |
Tang LS, Wlodarczyk BJ, Santillano DR, et al. Deve-lopmental consequences of abnormal folate transport during murine heart morphogenesis[J]. Birth Defects Res A Clin Mol Teratol, 2004, 70: 449-458.
doi: 10.1002/bdra.20043 |
[1] | 朱晓丽, 杨倩利, 王博, 拓胜军, 赵雪丽, 李静, 成胜全, 刘丽文. 儿童肥厚型心肌病中Noonan综合征基因型与临床表型[J]. 临床儿科杂志, 2023, 41(2): 125-129. |
[2] | 陈艳华, 尹丹, 郑敏, 吕铁伟, 易岂建, 李谧, 向平. 经导管介入封堵治疗儿童动脉导管未闭合并二尖瓣反流疗效评价[J]. 临床儿科杂志, 2022, 40(7): 517-521. |
[3] | 陈瑜, 徐维虹, 汪思园. 先天性心脏病患儿体外循环后发生低体温风险的列线图模型建立与评价[J]. 临床儿科杂志, 2021, 39(9): 682-. |
[4] | 陈颖慧,张 琪. 调控动脉导管闭合的分子机制研究进展[J]. 临床儿科杂志, 2021, 39(11): 869-. |
[5] | 王桂喜,孙锟,孔令晖,等. SNParray分析技术在胎儿先天性心脏病诊断中的价值[J]. 临床儿科杂志, 2021, 39(10): 726-. |
[6] | 周云国,张政,许飞,等. 应用室间隔缺损封堵器治疗婴幼儿特殊形状动脉导管未闭疗效观察[J]. 临床儿科杂志, 2020, 38(9): 679-. |
[7] | 傅行鹏,叶菁菁,俞劲,等. 先天性心脏病合并感染性心内膜炎42 例患儿超声分析[J]. 临床儿科杂志, 2020, 38(2): 129-. |
[8] | 王智利,罗斯颖,易茜,等. CPAP 在先天性心脏病合并重症肺炎心功能不全患儿中的应用[J]. 临床儿科杂志, 2020, 38(1): 10-. |
[9] | 王野峰,胡原,杨舟,等. 儿童先天性心脏病合并心肌致密化不全的介入治疗及随访分析[J]. 临床儿科杂志, 2020, 38(1): 49-. |
[10] | 徐蒙蒙,徐月娟,陈 笋,等. 内脏异位综合征患儿中DNAI1 和DNAH5 基因编码区突变分析[J]. 临床儿科杂志, 2019, 37(7): 494-. |
[11] | 周双, 石鑫, 陈笋, 于昱. 环境影响 DNA 甲基化及导致先天性心脏病发生的研究进展[J]. 临床儿科杂志, 2018, 36(8): 630-. |
[12] | 潘诚, 邹小明, 陈刚, 王涛, 江先宇, 陈建勇 . 体格检查、脉搏血氧饱和度筛查和灌注指数 在新生儿先天性心脏病筛查中的作用[J]. 临床儿科杂志, 2018, 36(3): 166-. |
[13] | 王天鹤, 陈笋, 于昱. 圆锥动脉干畸形基因学研究进展#br#[J]. 临床儿科杂志, 2018, 36(11): 875-. |
[14] | 马丽. 妊娠期高血压与胎儿先天性心脏病发病风险的meta 分析[J]. 临床儿科杂志, 2017, 35(5): 372-. |
[15] | 袁勇华, 张爱民, 何学华, 徐俊, 黄芙蓉, 刘丽萍, 刘震宇, 夏晓辉, 吕梅, 朱潜力, 李艾桐. 无创心指数检测在评价新生儿先天性心脏病 合并心力衰竭的临床应用价值#br#[J]. 临床儿科杂志, 2017, 35(10): 747-. |
|